Suppr超能文献

通过双程激光加工提高柔性激光诱导石墨烯超级电容器的性能。

Boosting flexible laser-induced graphene supercapacitors performance through double pass laser processing.

作者信息

Hamada Assia, Ryu Yu Kyoung, Velasco Andres, Gómez-Mancebo María Belén, Fernández Carretero Sergio, Calle Fernando, Martinez Javier

机构信息

Instituto de Sistemas Optoelectrónicos y Microtecnología, Universidad Politécnica de Madrid, Av. Complutense 30, 28040 Madrid, Spain.

Departamento de Física Aplicada e Ingeniería de Materiales, E.T.S.I Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain.

出版信息

iScience. 2024 Dec 26;28(1):111696. doi: 10.1016/j.isci.2024.111696. eCollection 2025 Jan 17.

Abstract

This study proposes a simple and cost-effective approach to enhance the performance of supercapacitors based on laser-induced graphene (LIG). The use of two consecutive laser passes using the same CO engraver on polyimide film led to the expansion in the size of the pores, the increase in the graphitization degree, and the densification of the produced material. These changes in the morphology and chemical structure of the LIG impacted positively its electrochemical performance when it was used as an electrode for supercapacitors. The best achieved material displayed the following results: (a) an enhancement of the areal energy density from 0.77 to 2.20 μWh/cm at 0.05 mA/cm, (b) a reduction of 60% in the equivalent series resistance, (c) high cycling stability with a capacitance retention rate of 91% after 10.000 cycles, (d) high performance stability under mechanical tests at different angles, and (e) green LED illumination under configuration in series.

摘要

本研究提出了一种简单且经济高效的方法来提高基于激光诱导石墨烯(LIG)的超级电容器的性能。在聚酰亚胺薄膜上使用同一台CO雕刻机进行连续两次激光扫描,导致孔隙尺寸扩大、石墨化程度增加以及所制备材料的致密化。当LIG用作超级电容器的电极时,其形态和化学结构的这些变化对其电化学性能产生了积极影响。所制备的最佳材料呈现出以下结果:(a)在0.05 mA/cm时,面积能量密度从0.77 μWh/cm提高到2.20 μWh/cm;(b)等效串联电阻降低60%;(c)具有高循环稳定性,在10000次循环后电容保持率为91%;(d)在不同角度的机械测试下具有高性能稳定性;(e)在串联配置下可实现绿色发光二极管照明。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a2e/11780167/ac64633d76bf/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验