Huang Wei-Chin, Chen I-Shu, Yu Hsien-Chung, Chen Chi-Shen, Wu Fu-Zong, Hsu Chiao-Lin, Wu Pin-Chieh
Health Management Center, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
Department of Pharmacy, Chia Nan University of Pharmacy & Science, Tainan, Taiwan.
Bone Rep. 2025 Jan 11;24:101826. doi: 10.1016/j.bonr.2025.101826. eCollection 2025 Mar.
Osteoporosis is a growing public health concern in aging populations such as Taiwan, where limited utilization of dual-energy X-ray absorptiometry (DXA) often leads to underdiagnosis and even delayed treatment. Therefore, we leveraged machine learning (ML) and aimed to develop a simple and easily accessible model that effectively identifies individuals at high risk of osteoporosis.
This retrospective analysis enrolled 5510 men aged ≥50 years and 4720 postmenopausal women who underwent DXA at the Kaohsiung Veterans General Hospital, with another cohort of 610 men and 523 women for validation. We developed separate models for men and women using decision trees, random forests, support vector machines, k-nearest neighbors, extreme gradient boosting, and artificial neural networks (ANNs) to predict osteoporosis. Furthermore, we compared each model with the traditional Osteoporosis Self-Assessment Tool for Asians (OSTA) model.
We identified age, height, weight, and BMI as variables for our prediction model and evaluated the model's performance using the area under the receiver operating characteristic curve (AUC). The ANN model significantly outperformed the OSTA model and all the other ML models for both men and women (AUC: 0.67 for men; 0.77 for women). The validation data for the ANN model showed similar AUCs for both men and women.
This study developed ML models to help identify individuals at high risk of osteoporosis in postmenopausal women and men aged ≥50 years in southern Taiwan. Our ML models, especially the ANN model, surpassed the OSTA model and consistently performed well across different populations.
骨质疏松症在台湾等老龄化人口中日益成为公共卫生问题,在台湾,双能X线吸收测定法(DXA)的使用受限常常导致诊断不足甚至治疗延误。因此,我们利用机器学习(ML),旨在开发一种简单且易于使用的模型,以有效识别骨质疏松症高危个体。
这项回顾性分析纳入了5510名年龄≥50岁的男性和4720名在高雄荣民总医院接受DXA检查的绝经后女性,并另有610名男性和523名女性作为验证队列。我们使用决策树、随机森林、支持向量机、k近邻、极端梯度提升和人工神经网络(ANN)为男性和女性分别开发模型,以预测骨质疏松症。此外,我们将每个模型与传统的亚洲人骨质疏松自我评估工具(OSTA)模型进行比较。
我们将年龄、身高、体重和体重指数确定为预测模型的变量,并使用受试者操作特征曲线下面积(AUC)评估模型性能。ANN模型在男性和女性中均显著优于OSTA模型和所有其他ML模型(男性AUC:0.67;女性AUC:0.77)。ANN模型的验证数据显示,男性和女性的AUC相似。
本研究开发了ML模型,以帮助识别台湾南部≥50岁的绝经后女性和男性中的骨质疏松症高危个体。我们的ML模型,尤其是ANN模型,优于OSTA模型,并且在不同人群中始终表现良好。