Suppr超能文献

基于绿色g-CN@LiCoO纳米复合材料开发用于马拉硫磷检测的高灵敏度电化学传感器。

Developing a highly sensitive electrochemical sensor for malathion detection based on green g-CN@LiCoO nanocomposites.

作者信息

Ahmad Nafis, Kumar Anjan, Rachchh Nikunj, Jyothi S Renuka, Bhanot Deepak, Kumari Bharti, Kumar Abhinav, Abosaoda Munthar Kadhim

机构信息

Department of Physics, College of Science, King Khalid University Abha 61413 Saudi Arabia

Department of Electronics and Communication Engineering, GLA University Mathura-281406 India.

出版信息

RSC Adv. 2025 Feb 3;15(5):3378-3388. doi: 10.1039/d4ra08023h. eCollection 2025 Jan 29.

Abstract

Nowadays, developing pesticide-free agriculture is highly demanded by society. The development of electrochemical sensors to monitor and control pesticides is an effective step toward this desired goal. The current research has faced this issue by modifying of glassy carbon electrodes (GCEs) with green g-CN@LiCoO nanocomposites to probe malathion, an organophosphate pesticide. The g-CN@LiCoO modified GCE showed higher current than the net GCE, as a result of improved electrocatalytic performance of the modified GCE to oxidize malathion. Increased malathion concentration enhanced the malathion oxidation anodic peak current at +410 mV caused by the g-CN@LiCoO modified GCE. The developed probe showed an excellent linear response for malathion detection in the 5-120 nM ( = 0.994) range and recorded a limit of detection of 4.38 nM. Besides, the modified GCE reveals considerable stability and reproducibility, which offers a cost-effective, sensitive, and selective electrode for malathion probing.

摘要

如今,发展无农药农业是社会的强烈需求。开发用于监测和控制农药的电化学传感器是朝着这一理想目标迈出的有效一步。当前的研究通过用绿色g-CN@LiCoO纳米复合材料修饰玻碳电极(GCEs)来探测有机磷农药马拉硫磷,从而解决了这一问题。由于修饰后的GCE对马拉硫磷氧化的电催化性能提高,g-CN@LiCoO修饰的GCE显示出比净GCE更高的电流。马拉硫磷浓度的增加增强了由g-CN@LiCoO修饰的GCE在+410 mV处引起的马拉硫磷氧化阳极峰电流。所开发的探针在5-120 nM( = 0.994)范围内对马拉硫磷检测显示出优异的线性响应,检测限为4.38 nM。此外,修饰后的GCE具有相当高的稳定性和重现性,为马拉硫磷探测提供了一种经济高效、灵敏且选择性高的电极。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b03/11788889/5107797bbcab/d4ra08023h-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验