Suppr超能文献

利用常规可用的电子健康记录数据元素来开发和验证数字鸿沟风险评分。

Using routinely available electronic health record data elements to develop and validate a digital divide risk score.

作者信息

Faro Jamie M, Obermiller Emily, Obermiller Corey, Trinkley Katy E, Wright Garth, Sadasivam Rajani S, Foley Kristie L, Cutrona Sarah L, Houston Thomas K

机构信息

Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605, United States.

Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27101, United States.

出版信息

JAMIA Open. 2025 Feb 4;8(1):ooaf004. doi: 10.1093/jamiaopen/ooaf004. eCollection 2025 Feb.

Abstract

BACKGROUND

Digital health (patient portals, remote monitoring devices, video visits) is a routine part of health care, though the digital divide may affect access.

OBJECTIVES

To test and validate an electronic health record (EHR) screening tool to identify patients at risk of the digital divide.

MATERIALS AND METHODS

We conducted a retrospective EHR data extraction and cross-sectional survey of participants within 1 health care system. We identified 4 potential digital divide markers from the EHR: (1) mobile phone number, (2) email address, (3) active patient portal, and (4) >2 patient portal logins in the last year. We mailed surveys to patients at higher risk (missing all 4 markers), intermediate risk (missing 1-3 markers), or lower risk (missing no markers). Combining EHR and survey data, we summarized the markers into risk scores and evaluated its association with patients' report of lack of Internet access. Then, we assessed the association of EHR markers and eHealth Literacy Scale survey outcomes.

RESULTS

A total of 249 patients (39.4%) completed the survey (53%>65 years, 51% female, 50% minority race, 55% rural/small town residents, 46% private insurance, 45% Medicare). Individually, the 4 EHR markers had high sensitivity (range 81%-95%) and specificity (range 65%-79%) compared with survey responses. The EHR marker-based score (high risk, intermediate risk, low risk) predicted absence of Internet access (receiver operator characteristics -statistic=0.77). Mean digital health literacy scores significantly decreased as her marker digital divide risk increased (  <.001).

DISCUSSION

Each of the four EHR markers (Cell phone, email address, patient portal active, and patient portal actively used) compared with self-report yielded high levels of sensitivity, specificity, and overall accuracy.

CONCLUSION

Using these markers, health care systems could target interventions and implementation strategies to support equitable patient access to digital health.

摘要

背景

数字健康(患者门户、远程监测设备、视频问诊)是医疗保健的常规组成部分,尽管数字鸿沟可能会影响其可及性。

目的

测试并验证一种电子健康记录(EHR)筛查工具,以识别有数字鸿沟风险的患者。

材料与方法

我们对一个医疗保健系统内的参与者进行了回顾性EHR数据提取和横断面调查。我们从EHR中确定了4个潜在的数字鸿沟标志物:(1)手机号码,(2)电子邮件地址,(3)活跃的患者门户,以及(4)去年患者门户登录次数>2次。我们向高风险(4个标志物均缺失)、中度风险(缺失1 - 3个标志物)或低风险(无标志物缺失)的患者邮寄了调查问卷。结合EHR和调查数据,我们将这些标志物汇总为风险评分,并评估其与患者报告的互联网接入不足之间的关联。然后,我们评估了EHR标志物与电子健康素养量表调查结果之间的关联。

结果

共有249名患者(39.4%)完成了调查(53%年龄>65岁,51%为女性,50%为少数族裔,55%为农村/小镇居民,46%有私人保险,45%有医疗保险)。与调查回复相比,这4个EHR标志物单独来看具有较高的敏感性(范围为81% - 95%)和特异性(范围为65% - 79%)。基于EHR标志物的评分(高风险、中度风险、低风险)预测了互联网接入不足(受试者操作特征统计量=0.77)。随着数字鸿沟风险标志物的增加,平均数字健康素养得分显著降低(P <.001)。

讨论

与自我报告相比,四个EHR标志物(手机号码、电子邮件地址、活跃的患者门户和活跃使用的患者门户)中的每一个都产生了高水平的敏感性、特异性和总体准确性。

结论

利用这些标志物,医疗保健系统可以针对干预措施和实施策略,以支持患者公平地获取数字健康服务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43f0/11792649/bfafafd73d27/ooaf004f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验