Suppr超能文献

基于多维心-机械信号的传统机器学习和深度学习方法在主动脉瓣狭窄分类中的应用。

Classification of aortic stenosis using conventional machine learning and deep learning methods based on multi-dimensional cardio-mechanical signals.

机构信息

School of Instrument Science and Engineering, Southeast University, Nanjing, China.

Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA.

出版信息

Sci Rep. 2020 Oct 16;10(1):17521. doi: 10.1038/s41598-020-74519-6.

Abstract

This paper introduces a study on the classification of aortic stenosis (AS) based on cardio-mechanical signals collected using non-invasive wearable inertial sensors. Measurements were taken from 21 AS patients and 13 non-AS subjects. A feature analysis framework utilizing Elastic Net was implemented to reduce the features generated by continuous wavelet transform (CWT). Performance comparisons were conducted among several machine learning (ML) algorithms, including decision tree, random forest, multi-layer perceptron neural network, and extreme gradient boosting. In addition, a two-dimensional convolutional neural network (2D-CNN) was developed using the CWT coefficients as images. The 2D-CNN was made with a custom-built architecture and a CNN based on Mobile Net via transfer learning. After the reduction of features by 95.47%, the results obtained report 0.87 on accuracy by decision tree, 0.96 by random forest, 0.91 by simple neural network, and 0.95 by XGBoost. Via the 2D-CNN framework, the transfer learning of Mobile Net shows an accuracy of 0.91, while the custom-constructed classifier reveals an accuracy of 0.89. Our results validate the effectiveness of the feature selection and classification framework. They also show a promising potential for the implementation of deep learning tools on the classification of AS.

摘要

本文介绍了一种基于非侵入式可穿戴惯性传感器采集的心机械信号对主动脉瓣狭窄(AS)进行分类的研究。测量对象包括 21 名 AS 患者和 13 名非 AS 患者。该研究使用弹性网络实现特征分析框架,以减少连续小波变换(CWT)生成的特征。实验在几种机器学习(ML)算法之间进行了性能比较,包括决策树、随机森林、多层感知机神经网络和极端梯度提升。此外,还使用 CWT 系数作为图像开发了二维卷积神经网络(2D-CNN)。2D-CNN 采用了自定义架构和基于迁移学习的 Mobile Net 上的 CNN。在特征减少 95.47%后,决策树的准确率为 0.87,随机森林的准确率为 0.96,简单神经网络的准确率为 0.91,XGBoost 的准确率为 0.95。通过 2D-CNN 框架,Mobile Net 的迁移学习准确率为 0.91,而自定义分类器的准确率为 0.89。我们的研究结果验证了特征选择和分类框架的有效性。它们还表明,深度学习工具在 AS 分类中的应用具有很大的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6a3/7568576/5b9b775b2f19/41598_2020_74519_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验