Alshehri Hadeel, Al-Nafjan Abeer, Aldayel Mashael
Computer Science Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia.
Information Technology Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia.
Diagnostics (Basel). 2025 Jan 27;15(3):300. doi: 10.3390/diagnostics15030300.
Objective pain evaluation is crucial for determining appropriate treatment strategies in clinical settings. Studies have demonstrated the potential of using brain-computer interface (BCI) technology for pain classification and detection. Collating knowledge and insights from prior studies, this review explores the extensive work on pain detection based on electroencephalography (EEG) signals. It presents the findings, methodologies, and advancements reported in 20 peer-reviewed articles that utilize machine learning and deep learning (DL) approaches for EEG-based pain detection. We analyze various ML and DL techniques, support vector machines, random forests, k-nearest neighbors, and convolution neural network recurrent neural networks and transformers, and their effectiveness in decoding pain neural signals. The motivation for combining AI with BCI technology lies in the potential for significant advancements in the real-time responsiveness and adaptability of these systems. We reveal that DL techniques effectively analyze EEG signals and recognize pain-related patterns. Moreover, we discuss advancements and challenges associated with EEG-based pain detection, focusing on BCI applications in clinical settings and functional requirements for effective pain classification systems. By evaluating the current research landscape, we identify gaps and opportunities for future research to provide valuable insights for researchers and practitioners.
客观的疼痛评估对于在临床环境中确定适当的治疗策略至关重要。研究表明,使用脑机接口(BCI)技术进行疼痛分类和检测具有潜力。本综述整理了先前研究的知识和见解,探讨了基于脑电图(EEG)信号进行疼痛检测的大量工作。它展示了20篇同行评审文章中报道的利用机器学习和深度学习(DL)方法进行基于EEG的疼痛检测的研究结果、方法和进展。我们分析了各种机器学习和深度学习技术、支持向量机、随机森林、k近邻以及卷积神经网络、循环神经网络和变换器,以及它们在解码疼痛神经信号方面的有效性。将人工智能与BCI技术相结合的动机在于这些系统在实时响应性和适应性方面有显著进步的潜力。我们发现深度学习技术能够有效地分析EEG信号并识别与疼痛相关的模式。此外,我们讨论了基于EEG的疼痛检测的进展和挑战,重点关注BCI在临床环境中的应用以及有效疼痛分类系统的功能要求。通过评估当前的研究状况,我们确定了未来研究的差距和机会,为研究人员和从业者提供有价值的见解。