Suppr超能文献

在线新冠疫情信息与建议的信任模型:横断面问卷调查研究

A Model of Trust in Online COVID-19 Information and Advice: Cross-Sectional Questionnaire Study.

作者信息

Sillence Elizabeth, Branley-Bell Dawn, Moss Mark, Briggs Pam

机构信息

Department of Psychology, Northumbria University, Newcastle upon Tyne, United Kingdom.

出版信息

JMIR Infodemiology. 2025 Feb 13;5:e59317. doi: 10.2196/59317.

Abstract

BACKGROUND

During the COVID-19 pandemic, many people sought information from websites and social media. Understanding the extent to which these sources were trusted is important in relation to health communication.

OBJECTIVE

This study aims to identify the key factors influencing UK citizens' trust and intention to act on advice about COVID-19 found via digital resources and to test whether an existing model of trust in eHealth provided a good fit for COVID-19-related information seeking online. We also wished to identify any differences between the evaluation of general information and information relating specifically to COVID-19 vaccines.

METHODS

In total, 525 people completed an online survey in January 2022 encompassing a general web trust questionnaire, measures of information corroboration, coping perceptions, and intention to act. Data were analyzed using principal component analysis and structural equation modeling. The evaluation responses of general information and COVID-19 vaccine information were also compared.

RESULTS

The principal component analysis revealed 5 trust factors: (1) credibility and impartiality, (2) familiarity, (3) privacy, (4) usability, and (5) personal experiences. In the final structural equation modeling model, trust had a significant direct effect on intention to act (β=.65; P<.001). Of the trust factors, credibility and impartiality had a significant positive direct effect on trust (β=.82; P<.001). People searching for vaccination information felt less at risk, less anxious, and more optimistic after reading the information. We noted that most people sought information from "official" sources. Finally, in the context of COVID-19, "credibility and impartiality" remain a key predictor of trust in eHealth resources, but in comparison with previous models of trust in online health information, checking and corroborating information did not form a significant part of trust evaluations.

CONCLUSIONS

In times of uncertainty, when faced with a global emergent health concern, people place their trust in familiar websites and rely on the perceived credibility and impartiality of those digital sources above other trust factors.

摘要

背景

在新冠疫情期间,许多人从网站和社交媒体获取信息。了解这些信息来源受信任的程度对于健康传播而言至关重要。

目的

本研究旨在确定影响英国公民对通过数字资源获取的新冠疫情相关建议的信任度及采取行动意愿的关键因素,并检验现有的电子健康信任模型是否适用于在线新冠疫情相关信息搜索。我们还希望找出对一般信息与特定新冠疫苗相关信息的评估之间的差异。

方法

2022年1月,共有525人完成了一项在线调查,该调查涵盖一份通用网络信任问卷、信息确证措施、应对认知以及采取行动的意愿。数据采用主成分分析和结构方程模型进行分析。同时比较了对一般信息和新冠疫苗信息的评估回答。

结果

主成分分析揭示了5个信任因素:(1)可信度与公正性;(2)熟悉度;(3)隐私性;(4)可用性;(5)个人经历。在最终的结构方程模型中,信任对采取行动的意愿有显著的直接影响(β = 0.65;P < 0.001)。在信任因素中,可信度与公正性对信任有显著的正向直接影响(β = 0.82;P < 0.001)。搜索疫苗信息的人在阅读信息后感觉风险更低、焦虑更少且更乐观。我们注意到大多数人从“官方”来源获取信息。最后,在新冠疫情背景下,“可信度与公正性”仍是对电子健康资源信任的关键预测因素,但与以往在线健康信息信任模型相比,核实和确证信息并未在信任评估中占据显著部分。

结论

在不确定时期,当面临全球突发健康问题时,人们信任熟悉的网站,并将这些数字来源的可信度和公正性置于其他信任因素之上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f18/11888072/507a589fbd60/infodemiology_v5i1e59317_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验