Dong Qiwei, Ezeh Cynthia, Wu Yupeng, Hetke Jamille F, Cogan Stuart, Orazem Mark E, Otto Kevin J
Annu Int Conf IEEE Eng Med Biol Soc. 2024 Jul;2024:1-4. doi: 10.1109/EMBC53108.2024.10782059.
The overall focus of this research program is to investigate the viability and safety of microelectrode arrays (MEAs) and ultramicroelectrode arrays (UMEAs) for microstimulation (µStim) in the brain. We aim to assess their potential to deliver adequate electrical stimulation for neural activation without causing electrode or tissue damage. To this end, here we conducted galvanostatic Electrochemical Impedance Spectroscopy (EIS) to assess the behavior of electrodes of various diameters both pre- and post-stimulation in a rat model. Our first-generation electrode arrays (G1) were designed with electrode diameters spanning 3 orders of magnitude and including subcellular dimensions. Using these devices, we delivered 0.4 nC/phase stimulation in vivo. We conducted in vitro EIS measurements before and after the current pulsing. Our findings show that these electrode arrays, including UMEAs, exhibit stable electrochemical behavior following a 0.4 nC/phase current pulse. To validate the EIS frequency range used for the G1 measurements, we designed a second-generation electrode array (G2) that included a terminating lead and a looping lead. This array provided the ability to assess the accuracy contour plot of our EIS system and electrode array platform. This exploratory research contributes to the ongoing knowledge of UMEAs in µStim applications. These developments may result in high-fidelity, non-damaging multichannel µStim, and improved neuromodulation technology for the treatment of neural diseases and injuries.
本研究项目的总体重点是研究微电极阵列(MEA)和超微电极阵列(UMEA)用于脑微刺激(µStim)的可行性和安全性。我们旨在评估它们在不造成电极或组织损伤的情况下提供足够电刺激以激活神经的潜力。为此,我们在此进行了恒电流电化学阻抗谱(EIS),以评估大鼠模型中各种直径电极在刺激前后的行为。我们的第一代电极阵列(G1)设计的电极直径跨越3个数量级,包括亚细胞尺寸。使用这些装置,我们在体内进行了0.4 nC/相的刺激。我们在电流脉冲前后进行了体外EIS测量。我们的研究结果表明,这些电极阵列,包括UMEA,在0.4 nC/相电流脉冲后表现出稳定的电化学行为。为了验证用于G1测量的EIS频率范围,我们设计了第二代电极阵列(G2),其中包括一个终端引线和一个环形引线。该阵列能够评估我们的EIS系统和电极阵列平台的精度等高线图。这项探索性研究有助于增加对UMEA在µStim应用方面的现有知识。这些进展可能会带来高保真、无损伤的多通道µStim,并改善用于治疗神经疾病和损伤的神经调节技术。