Schroeder Amelia, Loth Melanie, Luo Chunyu, Yao Sicong, Yan Hanying, Zhang Daiwei, Piya Sarbottam, Plowey Edward, Hu Wenxing, Clemenceau Jean R, Jang Inyeop, Kim Minji, Barnfather Isabel, Chan Su Jing, Reynolds Taylor L, Carlile Thomas, Cullen Patrick, Sung Ji-Youn, Tsai Hui-Hsin, Park Jeong Hwan, Hwang Tae Hyun, Zhang Baohong, Li Mingyao
Statistical Center for Single-Cell and Spatial Genomics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
Departments of Biostatistics and Genetics, University of North Carolina, Chapel Hill, NC 27599, United States.
bioRxiv. 2025 Mar 1:2025.02.25.640190. doi: 10.1101/2025.02.25.640190.
Recent advances in spatial transcriptomics (ST) technologies have transformed our ability to profile gene expression while retaining the crucial spatial context within tissues. However, existing ST platforms suffer from high costs, long turnaround times, low resolution, limited gene coverage, and small tissue capture areas, which hinder their broad applications. Here we present iSCALE, a method that predicts super-resolution gene expression and automatically annotates cellular-level tissue architecture for large-sized tissues that exceed the capture areas of standard ST platforms. The accuracy of iSCALE were validated by comprehensive evaluations, involving benchmarking experiments, immunohistochemistry staining, and manual annotation by pathologists. When applied to multiple sclerosis human brain samples, iSCALE uncovered lesion associated cellular characteristics that were undetectable by conventional ST experiments. Our results demonstrate iSCALE's utility in analyzing large-sized tissues with automatic and unbiased tissue annotation, inferring cell type composition, and pinpointing regions of interest for features not discernible through human visual assessment.
空间转录组学(ST)技术的最新进展改变了我们在保留组织内关键空间背景的同时分析基因表达的能力。然而,现有的ST平台存在成本高、周转时间长、分辨率低、基因覆盖范围有限以及组织捕获面积小等问题,这阻碍了它们的广泛应用。在此,我们介绍iSCALE,这是一种能够预测超分辨率基因表达并自动注释大型组织细胞水平组织结构的方法,这些大型组织超出了标准ST平台的捕获面积。iSCALE的准确性通过全面评估得到验证,包括基准实验、免疫组织化学染色以及病理学家的手动注释。当应用于多发性硬化症人脑样本时,iSCALE揭示了传统ST实验无法检测到的病变相关细胞特征。我们的结果证明了iSCALE在分析大型组织方面的实用性,它能够进行自动且无偏差的组织注释、推断细胞类型组成,并精确定位通过人类视觉评估无法辨别的特征的感兴趣区域。