Suppr超能文献

利用机器学习研究住院治疗在巴西登革热传播动态中的作用:卫生系统复原力的生态学研究

Leveraging machine learning on the role of hospitalizations in the dynamics of dengue spread in Brazil: an ecological study of health systems resilience.

作者信息

de Castro-Nunes Paula, Palmieri Paloma, Simões Patrícia Passos, Rodrigues de Carvalho Paulo Victor, Jatobá Alessandro

机构信息

Antônio Ivo de Carvalho Center for Strategic Studies (CEE) - Oswaldo Cruz Foundation - Rio de Janeiro, Brazil.

出版信息

Lancet Reg Health Am. 2025 Feb 24;44:101042. doi: 10.1016/j.lana.2025.101042. eCollection 2025 Apr.

Abstract

BACKGROUND

The alarming rise in dengue cases and fatalities worldwide necessitates an in-depth analysis of essential public health functions (EPHFs) to fortify the resilience of health systems in the face of upcoming surges. This study focuses on the resilience of Brazil's health system in managing dengue from 2010 to 2024, leveraging machine learning techniques to correlate EPHF variables with dengue outcomes.

METHODS

Utilizing public data from DATASUS and IBGE, we evaluated indicators such as healthcare workforce, health facilities, and dengue-specific data. A regression tree analysis identified associations between dengue hospitalizations and dengue deaths among Brazilian capitals, emphasizing the importance of strengthening outpatient services and monitoring systems for resilient performance.

FINDINGS

This study revealed that capitals with fewer hospitalizations have seen recent improvements; nevertheless, continuous efforts are vital to prevent sudden surges. These findings underscore the critical role of health surveillance and community involvement in enhancing EPHF performance.

INTERPRETATION

This research contributes to understanding the dynamic interactions within health systems and highlights the importance of proactive and integrated public health strategies to manage dengue and similar arboviruses.

FUNDING

The present study was funded by the Inova Fiocruz Program, grant 1366515559697323; and by the National Council for Scientific and Technological Development (CNPq), grant 401278/2022-0. Alessandro Jatobá is partially funded by CNPq, grants 307029/2021-2 and 405469/2023-3 and by the Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro (FAPERJ), grant E-26/210.728/2023 and E-26/201.252/2022. Paulo Victor Rodrigues de Carvalho is partially funded by CNPq, grant: 304770/2020-5 and by FAPERJ, grant E-26/203.934/2024.

摘要

背景

全球登革热病例和死亡人数的惊人增长,使得有必要对基本公共卫生功能(EPHFs)进行深入分析,以增强卫生系统面对未来疫情激增时的复原力。本研究聚焦于2010年至2024年巴西卫生系统在管理登革热方面的复原力,利用机器学习技术将EPHF变量与登革热结果相关联。

方法

利用来自巴西统一卫生系统(DATASUS)和巴西地理与统计研究所(IBGE)的公共数据,我们评估了诸如医疗人力、卫生设施以及登革热特定数据等指标。回归树分析确定了巴西各首府城市登革热住院病例与登革热死亡之间的关联,强调了加强门诊服务和监测系统以实现复原力表现的重要性。

研究结果

本研究表明,住院病例较少的首府城市近期有所改善;然而,持续努力对于预防突然激增至关重要。这些发现强调了健康监测和社区参与在提升EPHF表现方面的关键作用。

解读

本研究有助于理解卫生系统内部的动态相互作用,并凸显了积极主动且综合的公共卫生策略对于管理登革热及类似虫媒病毒的重要性。

资金支持

本研究由创新菲奥克鲁兹计划资助,资助编号1366515559697323;以及由国家科学技术发展委员会(CNPq)资助,资助编号401278/2022 - 0。亚历山德罗·雅托巴部分由CNPq资助,资助编号307029/2021 - 2和405469/2023 - 3,以及由里约热内卢州卡洛斯·夏加斯·菲洛研究支持基金会(FAPERJ)资助,资助编号E - 26/210.728/2023和E - 26/201.252/2022。保罗·维克多·罗德里格斯·德·卡瓦略部分由CNPq资助,资助编号:304770/2020 - 5,以及由FAPERJ资助,资助编号E - 26/203.934/2024。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/475d/11891147/9d974a92d44e/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验