Kang Donghoon, Jeon Han Jo, Kim Jie-Hyun, Oh Sang-Il, Seong Ye Seul, Jang Jae Young, Kim Jung-Wook, Kim Joon Sung, Nam Seung-Joo, Bang Chang Seok, Choi Hyuk Soon
Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul 06591, Republic of Korea.
Department of Internal Medicine, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea.
Cancers (Basel). 2025 Mar 3;17(5):869. doi: 10.3390/cancers17050869.
The accurate prediction of lymph node metastasis (LNM) and lymphovascular invasion (LVI) is crucial for determining treatment strategies for early gastric cancer (EGC). This study aimed to develop and validate a deep learning-based clinical decision support system (CDSS) to predict LNM including LVI in EGC using real-world data. A deep learning-based CDSS was developed by integrating endoscopic images, demographic data, biopsy pathology, and CT findings from the data of 2927 patients with EGC across five institutions. We compared a transformer-based model to an image-only (basic convolutional neural network (CNN)) model and a multimodal classification (CNN with random forest) model. Internal testing was conducted on 449 patients from the five institutions, and external validation was performed on 766 patients from two other institutions. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), probability density function, and clinical utility curve. In the training, internal, and external validation cohorts, LNM/LVI was observed in 379 (12.95%), 49 (10.91%), 15 (9.09%), and 41 (6.82%) patients, respectively. The transformer-based model achieved an AUC of 0.9083, sensitivity of 85.71%, and specificity of 90.75%, outperforming the CNN (AUC 0.5937) and CNN with random forest (AUC 0.7548). High sensitivity and specificity were maintained in internal and external validations. The transformer model distinguished 91.8% of patients with LNM in the internal validation dataset, and 94.0% and 89.1% in the two different external datasets. We propose a deep learning-based CDSS for predicting LNM/LVI in EGC by integrating real-world data, potentially guiding treatment strategies in clinical settings.
准确预测淋巴结转移(LNM)和淋巴管侵犯(LVI)对于确定早期胃癌(EGC)的治疗策略至关重要。本研究旨在开发并验证一种基于深度学习的临床决策支持系统(CDSS),以利用真实世界数据预测EGC中的LNM(包括LVI)。通过整合来自五个机构的2927例EGC患者数据中的内镜图像、人口统计学数据、活检病理和CT检查结果,开发了一种基于深度学习的CDSS。我们将基于Transformer的模型与仅图像模型(基本卷积神经网络(CNN))和多模态分类模型(带随机森林的CNN)进行了比较。对来自五个机构的449例患者进行了内部测试,并对来自另外两个机构的766例患者进行了外部验证。使用受试者操作特征曲线下面积(AUC)、概率密度函数和临床效用曲线评估模型性能。在训练、内部和外部验证队列中,分别有379例(12.95%)、49例(10.91%)、15例(9.09%)和41例(6.82%)患者观察到LNM/LVI。基于Transformer的模型的AUC为0.9083,敏感性为85.71%,特异性为90.75%,优于CNN(AUC 0.5937)和带随机森林的CNN(AUC 0.7548)。在内部和外部验证中均保持了高敏感性和特异性。Transformer模型在内部验证数据集中区分出91.8%的LNM患者,在两个不同的外部数据集中分别为94.0%和89.1%。我们提出了一种基于深度学习的CDSS,通过整合真实世界数据来预测EGC中的LNM/LVI,有可能在临床环境中指导治疗策略。