Manojee Kalappanaickenpatty Suriaprakasam, Kannan Athiappan Rajiv
Department of Information Technology, Kongunadu College of Engineering and Technology (Autonomous) Thottiam, Trichy, Tamilnadu, India.
Department of Computer Science and Engineering, K.S.R. College of Engineering (Autonomous) Tiruchengode, Namakkal, Tamilnadu, India.
Am J Cancer Res. 2025 Feb 15;15(2):754-768. doi: 10.62347/XKFN1793. eCollection 2025.
Breast cancer is a disorder affecting women globally, and hence an early and precise classification is the best possible treatment to increase the survival rate. However, the breast cancer classification faced difficulties in scalability, fixed-size input images, and overfitting on limited datasets. To tackle these issues, this work proposes a Patho-Net model for breast cancer classification that overcomes the problems of scalability in color normalization, integrates the Gated Recurrent Unit (GRU) network with the U-Net architecture to process images without the need for resizing and computational efficiency, and addresses the overfitting problems. The proposed model collects and normalizes histopathology images using automated reference image selection with the Reinhard method for color standardization. Also, the Enhanced Adaptive Non-Local Means (EANLM) filtering is utilized for noise removal to preserve image features. These preprocessed images undergo semantic segmentation to isolate specific parts of an image, followed by feature extraction using an Improved Gray Level Co-occurrence Matrix (I-GLCM) to reveal fine patterns and textures in images. These features serve as input into the classification U-Net model integrated with GRU networks to improve the model performance. Finally, the classification result is expanded, and XAI is used for clear visual explanations of the model's predictions. The proposed Patho-Net model, which uses the 100X BreakHis dataset, achieves an accuracy of 98.90% in the classification of breast cancer.
乳腺癌是一种影响全球女性的疾病,因此早期精确分类是提高生存率的最佳治疗方法。然而,乳腺癌分类在可扩展性、固定大小输入图像以及在有限数据集上的过拟合方面面临困难。为了解决这些问题,这项工作提出了一种用于乳腺癌分类的病理网络(Patho-Net)模型,该模型克服了颜色归一化中的可扩展性问题,将门控循环单元(GRU)网络与U-Net架构集成,无需调整大小即可处理图像并提高计算效率,还解决了过拟合问题。所提出的模型使用基于莱因哈德(Reinhard)方法的自动参考图像选择来收集和归一化组织病理学图像以进行颜色标准化。此外,利用增强自适应非局部均值(EANLM)滤波去除噪声以保留图像特征。这些预处理后的图像进行语义分割以分离图像的特定部分,然后使用改进的灰度共生矩阵(I-GLCM)进行特征提取以揭示图像中的精细模式和纹理。这些特征作为输入进入与GRU网络集成的分类U-Net模型以提高模型性能。最后,扩展分类结果,并使用可解释人工智能(XAI)对模型的预测进行清晰的可视化解释。所提出的使用100X BreakHis数据集的病理网络(Patho-Net)模型在乳腺癌分类中达到了98.90%的准确率。