Suppr超能文献

定量动态对比增强磁共振成像参数可有效预测乳腺癌新辅助化疗的治疗效果。

Quantitative dynamic contrast-enhanced MRI parameters effectively predict treatment efficacy of neoadjuvant chemotherapy in breast cancer.

作者信息

Xu Ling, Zhou Fangfang, Su Lianzi, Wang Longsheng

机构信息

Radiology Department, The Second Affiliated Hospital of Anhui Medical University Hefei 230601, Anhui, China.

出版信息

Am J Transl Res. 2025 Feb 15;17(2):1039-1048. doi: 10.62347/GTIX2261. eCollection 2025.

Abstract

PURPOSE

To investigate the predictive value of quantitative DCE-MRI parameters for estimating the treatment efficacy of neoadjuvant chemotherapy (NACT) in breast carcinoma (BC).

METHODS

A retrospective analysis was conducted on 178 pathologically confirmed cases of BC, diagnosed via puncture biopsy, at The Second Affiliated Hospital of Anhui Medical University between January 2019 and June 2023. All patients received preoperative NACT. Based on postoperative pathological inspection results, 53 patients with grade IV-V pathological responses were included in the major histological response (MHR) group, and the remaining 125 with grade I-III pathological responses were assigned to the non-major histological response (NMHR) group. The pre- and post-chemotherapy early-phase enhancement rate (E), peak enhancement rate (E), and time to peak (T) on DCE-MRI were compared between the two patient cohorts. Quantitative parameters such as volume transfer constant (K), rate constant (K) and extravascular extracellular volume fraction (V) were obtained, and the post-NACT maximum tumor diameter (D-max) reduction rate and tumor volume reduction rate (TVRR) were calculated. Furthermore, the predictive efficacy of pre- and post-NACT quantitative DCE-MRI parameters for treatment responses was evaluated using receiver operating characteristic (ROC) curves.

RESULTS

The MHR group showed statistically higher post-NACT D-max reduction rate and TVRR than the NMHR group. The two patient cohorts were similar in pre-chemotherapy K, but the pre-chemotherapy K and V were lower in MHR; the post-chemotherapy K, K and V were all statistically different between groups (P < 0.05). The MHR group presented markedly lower E and E values and statistically longer T compared to the NMHR group after NACT (all P < 0.05). The pre-NACT quantitative DCE-MRI parameters demonstrated limited prediction performance, with V showing the highest efficacy (AUC = 0.612); in contrast, post-NACT quantitative DCE-MRI parameters exhibited improved predictive accuracy, with K demonstrating the best predictive performance (AUC = 0.801).

CONCLUSIONS

The pre-NACT quantitative DCE-MRI parameters are not effective in predicting the therapeutic outcome of NACT. However, the post-NACT DCE-MRI parameters provide accurate and reliable predictions of pathological responses, with K showing the highest predictive value and considerable clinical applicability.

摘要

目的

探讨定量动态对比增强磁共振成像(DCE-MRI)参数对评估乳腺癌(BC)新辅助化疗(NACT)疗效的预测价值。

方法

对安徽医科大学第二附属医院2019年1月至2023年6月间经穿刺活检病理确诊的178例BC患者进行回顾性分析。所有患者均接受术前NACT。根据术后病理检查结果,将53例病理反应为IV-V级的患者纳入主要组织学反应(MHR)组,其余125例病理反应为I-III级的患者分配至非主要组织学反应(NMHR)组。比较两组患者化疗前后DCE-MRI的早期强化率(E)、峰值强化率(E)和达峰时间(T)。获取容积转运常数(K)、速率常数(K)和血管外细胞外容积分数(V)等定量参数,并计算NACT后最大肿瘤直径(D-max)缩小率和肿瘤体积缩小率(TVRR)。此外,采用受试者操作特征(ROC)曲线评估NACT前后定量DCE-MRI参数对治疗反应的预测效能。

结果

MHR组NACT后的D-max缩小率和TVRR在统计学上高于NMHR组。两组患者化疗前的K值相似,但MHR组化疗前的K和V较低;化疗后两组间的K、K和V均有统计学差异(P < 0.05)。NACT后,MHR组的E和E值明显低于NMHR组,T在统计学上更长(均P < 0.05)。NACT前的定量DCE-MRI参数预测性能有限,其中V的效能最高(AUC = 0.612);相比之下,NACT后的定量DCE-MRI参数预测准确性有所提高,K的预测性能最佳(AUC = 0.801)。

结论

NACT前的定量DCE-MRI参数对预测NACT的治疗结果无效。然而,NACT后的DCE-MRI参数能准确可靠地预测病理反应,其中K的预测价值最高,具有相当的临床适用性。

相似文献

本文引用的文献

2
Efficacy Evaluation of Neoadjuvant Chemotherapy in Breast Cancer by MRI.MRI 对乳腺癌新辅助化疗的疗效评价。
Contrast Media Mol Imaging. 2022 Aug 4;2022:4542288. doi: 10.1155/2022/4542288. eCollection 2022.
4
Progress of Breast Cancer basic research in China.中国乳腺癌基础研究进展。
Int J Biol Sci. 2021 May 11;17(8):2069-2079. doi: 10.7150/ijbs.60631. eCollection 2021.
7
Neoadjuvant Chemotherapy for Breast Cancer: Past, Present, and Future.乳腺癌的新辅助化疗:过去、现在与未来
Breast Cancer (Auckl). 2020 Dec 16;14:1178223420980377. doi: 10.1177/1178223420980377. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验