Wang Zhongyi, Lin Fan, Ma Heng, Shi Yinghong, Dong Jianjun, Yang Ping, Zhang Kun, Guo Na, Zhang Ran, Cui Jingjing, Duan Shaofeng, Mao Ning, Xie Haizhu
School of Medical Imaging, Binzhou Medical University, Yantai, China.
Department of Radiology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, China.
Front Oncol. 2021 Feb 22;11:605230. doi: 10.3389/fonc.2021.605230. eCollection 2021.
We developed and validated a contrast-enhanced spectral mammography (CESM)-based radiomics nomogram to predict neoadjuvant chemotherapy (NAC)-insensitive breast cancers prior to treatment.
We enrolled 117 patients with breast cancer who underwent CESM examination and NAC treatment from July 2017 to April 2019. The patients were grouped randomly into a training set (n = 97) and a validation set (n = 20) in a ratio of 8:2. 792 radiomics features were extracted from CESM images including low-energy and recombined images for each patient. Optimal radiomics features were selected by using analysis of variance (ANOVA) and least absolute shrinkage and selection operator (LASSO) regression with 10-fold cross-validation, to develop a radiomics score in the training set. A radiomics nomogram incorporating the radiomics score and independent clinical risk factors was then developed using multivariate logistic regression analysis. With regard to discrimination and clinical usefulness, radiomics nomogram was evaluated using the area under the receiver operator characteristic (ROC) curve (AUC) and decision curve analysis (DCA).
The radiomics nomogram that incorporates 11 radiomics features and 3 independent clinical risk factors, including Ki-67 index, background parenchymal enhancement (BPE) and human epidermal growth factor receptor-2 (HER-2) status, showed an encouraging discrimination power with AUCs of 0.877 [95% confidence interval (CI) 0.816 to 0.924] and 0.81 (95% CI 0.575 to 0.948) in the training and validation sets, respectively. DCA revealed the increased clinical usefulness of this nomogram.
The proposed radiomics nomogram that integrates CESM-derived radiomics features and clinical parameters showed potential feasibility for predicting NAC-insensitive breast cancers.
我们开发并验证了一种基于对比增强光谱乳腺摄影(CESM)的放射组学列线图,用于在治疗前预测新辅助化疗(NAC)不敏感的乳腺癌。
我们纳入了2017年7月至2019年4月期间接受CESM检查和NAC治疗的117例乳腺癌患者。患者按8:2的比例随机分为训练集(n = 97)和验证集(n = 20)。从CESM图像中提取包括低能量图像和重组图像在内的792个放射组学特征,用于每位患者。通过方差分析(ANOVA)和最小绝对收缩和选择算子(LASSO)回归及10倍交叉验证来选择最佳放射组学特征,以在训练集中生成放射组学评分。然后使用多变量逻辑回归分析开发一个包含放射组学评分和独立临床风险因素的放射组学列线图。关于鉴别能力和临床实用性,使用受试者操作特征(ROC)曲线下面积(AUC)和决策曲线分析(DCA)对放射组学列线图进行评估。
包含11个放射组学特征和3个独立临床风险因素(包括Ki-67指数、背景实质强化(BPE)和人表皮生长因子受体2(HER-2)状态)的放射组学列线图在训练集和验证集中分别显示出令人鼓舞的鉴别能力,AUC分别为0.877 [95%置信区间(CI)0.816至0.924]和0.81(95%CI 0.575至0.948)。DCA显示该列线图的临床实用性有所提高。
所提出的整合CESM衍生的放射组学特征和临床参数的放射组学列线图显示出预测NAC不敏感乳腺癌的潜在可行性。