Suppr超能文献

扫描探针嵌段共聚物光刻技术。

Scanning probe block copolymer lithography.

机构信息

Department of Chemistry, International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20202-6. doi: 10.1073/pnas.1014892107. Epub 2010 Nov 8.

Abstract

Integration of individual nanoparticles into desired spatial arrangements over large areas is a prerequisite for exploiting their unique electrical, optical, and chemical properties. However, positioning single sub-10-nm nanoparticles in a specific location individually on a substrate remains challenging. Herein we have developed a unique approach, termed scanning probe block copolymer lithography, which enables one to control the growth and position of individual nanoparticles in situ. This technique relies on either dip-pen nanolithography (DPN) or polymer pen lithography (PPL) to transfer phase-separating block copolymer inks in the form of 100 or more nanometer features on an underlying substrate. Reduction of the metal ions via plasma results in the high-yield formation of single crystal nanoparticles per block copolymer feature. Because the size of each feature controls the number of metal atoms within it, the DPN or PPL step can be used to control precisely the size of each nanocrystal down to 4.8 ± 0.2 nm.

摘要

将单个纳米粒子整合到所需的空间排列中是利用其独特的电学、光学和化学性质的前提。然而,将单个亚 10nm 的纳米粒子定位在衬底上的特定位置仍然具有挑战性。在此,我们开发了一种独特的方法,称为扫描探针嵌段共聚物光刻,它可以控制单个纳米粒子在原位的生长和位置。该技术依赖于浸笔纳米光刻(DPN)或聚合物笔光刻(PPL),以将相分离嵌段共聚物墨水以 100 个或更多纳米特征的形式转移到底物上。通过等离子体还原金属离子,每嵌段共聚物特征中都会高收率地形成单晶纳米粒子。由于每个特征的大小控制其中的金属原子数量,因此 DPN 或 PPL 步骤可用于精确控制每个纳米晶体的大小,最小可达 4.8 ± 0.2nm。

相似文献

1
Scanning probe block copolymer lithography.
Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20202-6. doi: 10.1073/pnas.1014892107. Epub 2010 Nov 8.
2
Single-molecule protein arrays enabled by scanning probe block copolymer lithography.
Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):19521-5. doi: 10.1073/pnas.1116099108. Epub 2011 Nov 21.
3
Evolution of Dip-Pen Nanolithography (DPN): From Molecular Patterning to Materials Discovery.
Chem Rev. 2020 Jul 8;120(13):6009-6047. doi: 10.1021/acs.chemrev.9b00725. Epub 2020 Apr 22.
4
"Force-feedback" leveling of massively parallel arrays in polymer pen lithography.
Nano Lett. 2010 Apr 14;10(4):1335-40. doi: 10.1021/nl904200t.
5
Vapor phase polymerization of EDOT from submicrometer scale oxidant patterned by dip-pen nanolithography.
Langmuir. 2012 Jul 3;28(26):9953-60. doi: 10.1021/la301724v. Epub 2012 Jun 21.
6
Hard Transparent Arrays for Polymer Pen Lithography.
ACS Nano. 2016 Mar 22;10(3):3144-8. doi: 10.1021/acsnano.6b00528. Epub 2016 Mar 1.
7
Positionally defined, binary semiconductor nanoparticles synthesized by scanning probe block copolymer lithography.
Nano Lett. 2012 Feb 8;12(2):1022-5. doi: 10.1021/nl204233r. Epub 2012 Jan 17.
8
Polymer Pen Lithography with Lipids for Large-Area Gradient Patterns.
Langmuir. 2017 Sep 5;33(35):8739-8748. doi: 10.1021/acs.langmuir.7b01368. Epub 2017 Jul 6.
9
Polymer pen lithography.
Science. 2008 Sep 19;321(5896):1658-60. doi: 10.1126/science.1162193. Epub 2008 Aug 14.

引用本文的文献

1
Traversing the Periodic Table through Phase-Separating Nanoreactors.
Adv Mater. 2025 May;37(18):e2500088. doi: 10.1002/adma.202500088. Epub 2025 Mar 19.
3
Automated crystal system identification from electron diffraction patterns using multiview opinion fusion machine learning.
Proc Natl Acad Sci U S A. 2023 Nov 14;120(46):e2309240120. doi: 10.1073/pnas.2309240120. Epub 2023 Nov 9.
4
Direct Bottom-Up Growth: A Paradigm Shift for Studies in Wet-Chemical Synthesis of Gold Nanoparticles.
Chem Rev. 2023 Jul 12;123(13):8488-8529. doi: 10.1021/acs.chemrev.2c00914. Epub 2023 Jun 6.
5
Patterning-mediated supramolecular assembly of lipids into nanopalms.
iScience. 2022 Oct 13;25(11):105344. doi: 10.1016/j.isci.2022.105344. eCollection 2022 Nov 18.
6
Custom-made holey graphene scanning probe block co-polymer lithography.
Nanoscale Adv. 2022 Jan 31;4(5):1336-1344. doi: 10.1039/d1na00769f. eCollection 2022 Mar 1.
7
Heterogeneous Trimetallic Nanoparticles as Catalysts.
Chem Rev. 2022 Mar 23;122(6):6795-6849. doi: 10.1021/acs.chemrev.1c00493. Epub 2022 Mar 9.
9
Design of Elastomer-CNT Film Photoactuators for Nanolithography.
Polymers (Basel). 2019 Feb 13;11(2):314. doi: 10.3390/polym11020314.
10
Catalyst discovery through megalibraries of nanomaterials.
Proc Natl Acad Sci U S A. 2019 Jan 2;116(1):40-45. doi: 10.1073/pnas.1815358116. Epub 2018 Dec 17.

本文引用的文献

1
Block copolymer nanolithography: translation of molecular level control to nanoscale patterns.
Adv Mater. 2009 Dec 18;21(47):4769-92. doi: 10.1002/adma.200803302.
2
Matrix-assisted dip-pen nanolithography and polymer pen lithography.
Small. 2010 May 21;6(10):1077-81. doi: 10.1002/smll.200901198.
3
One-dimensional arrangement of gold nanoparticles with tunable interparticle distance.
Small. 2009 Dec;5(24):2819-22. doi: 10.1002/smll.200900770.
4
Silver nanoparticles with broad multiband linear optical absorption.
Angew Chem Int Ed Engl. 2009;48(32):5921-6. doi: 10.1002/anie.200900298.
6
Macroscopic 10-terabit-per-square-inch arrays from block copolymers with lateral order.
Science. 2009 Feb 20;323(5917):1030-3. doi: 10.1126/science.1168108.
7
Polymer self-assembly as a novel extension to optical lithography.
ACS Nano. 2007 Oct;1(3):147-50. doi: 10.1021/nn7002663.
9
Evolution of block copolymer lithography to highly ordered square arrays.
Science. 2008 Oct 17;322(5900):429-32. doi: 10.1126/science.1162950. Epub 2008 Sep 25.
10
Graphoepitaxy of self-assembled block copolymers on two-dimensional periodic patterned templates.
Science. 2008 Aug 15;321(5891):939-43. doi: 10.1126/science.1159352.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验