Department of Chemistry, International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20202-6. doi: 10.1073/pnas.1014892107. Epub 2010 Nov 8.
Integration of individual nanoparticles into desired spatial arrangements over large areas is a prerequisite for exploiting their unique electrical, optical, and chemical properties. However, positioning single sub-10-nm nanoparticles in a specific location individually on a substrate remains challenging. Herein we have developed a unique approach, termed scanning probe block copolymer lithography, which enables one to control the growth and position of individual nanoparticles in situ. This technique relies on either dip-pen nanolithography (DPN) or polymer pen lithography (PPL) to transfer phase-separating block copolymer inks in the form of 100 or more nanometer features on an underlying substrate. Reduction of the metal ions via plasma results in the high-yield formation of single crystal nanoparticles per block copolymer feature. Because the size of each feature controls the number of metal atoms within it, the DPN or PPL step can be used to control precisely the size of each nanocrystal down to 4.8 ± 0.2 nm.
将单个纳米粒子整合到所需的空间排列中是利用其独特的电学、光学和化学性质的前提。然而,将单个亚 10nm 的纳米粒子定位在衬底上的特定位置仍然具有挑战性。在此,我们开发了一种独特的方法,称为扫描探针嵌段共聚物光刻,它可以控制单个纳米粒子在原位的生长和位置。该技术依赖于浸笔纳米光刻(DPN)或聚合物笔光刻(PPL),以将相分离嵌段共聚物墨水以 100 个或更多纳米特征的形式转移到底物上。通过等离子体还原金属离子,每嵌段共聚物特征中都会高收率地形成单晶纳米粒子。由于每个特征的大小控制其中的金属原子数量,因此 DPN 或 PPL 步骤可用于精确控制每个纳米晶体的大小,最小可达 4.8 ± 0.2nm。