Suppr超能文献

运动员大腿骨骼肌在磁共振图像上的语义分割。

Semantic segmentation for individual thigh skeletal muscles of athletes on magnetic resonance images.

作者信息

Kasahara Jun, Ozaki Hiroki, Matsubayashi Takeo, Takahashi Hideyuki, Nakayama Ryohei

机构信息

Japan Institute of Sports Sciences, 3-15-1 Nishigaoka, Kita, Tokyo, 115-0056, Japan.

Graduate School of Health Science, Suzuka University of Medical Science, 1001-1 Kishioka, Suzuka, Mie, 510-0293, Japan.

出版信息

Radiol Phys Technol. 2025 Jun;18(2):496-504. doi: 10.1007/s12194-025-00901-6. Epub 2025 Mar 19.

Abstract

The skeletal muscles that athletes should train vary depending on their discipline and position. Therefore, individual skeletal muscle cross-sectional area assessment is important in the development of training strategies. To measure the cross-sectional area of skeletal muscle, manual segmentation of each muscle is performed using magnetic resonance (MR) imaging. This task is time-consuming and requires significant effort. Additionally, interobserver variability can sometimes be problematic. The purpose of this study was to develop an automated computerized method for semantic segmentation of individual thigh skeletal muscles from MR images of athletes. Our database consisted of 697 images from the thighs of 697 elite athletes. The images were randomly divided into a training dataset (70%), a validation dataset (10%), and a test dataset (20%). A label image was generated for each image by manually annotating 15 object classes: 12 different skeletal muscles, fat, bones, and vessels and nerves. Using the validation dataset, DeepLab v3+ was chosen from three different semantic segmentation models as a base model for segmenting individual thigh skeletal muscles. The feature extractor in DeepLab v3+ was also optimized to ResNet50. The mean Jaccard index and Dice index for the proposed method were 0.853 and 0.916, respectively, which were significantly higher than those from conventional DeepLab v3+ (Jaccard index: 0.810, p < .001; Dice index: 0.887, p < .001). The proposed method achieved a mean area error for 15 objective classes of 3.12%, useful in the assessment of skeletal muscle cross-sectional area from MR images.

摘要

运动员应训练的骨骼肌因运动项目和位置而异。因此,在制定训练策略时,个体骨骼肌横截面积评估很重要。为了测量骨骼肌的横截面积,需使用磁共振(MR)成像对每块肌肉进行手动分割。这项任务耗时且需要大量精力。此外,观察者间的差异有时可能会产生问题。本研究的目的是开发一种自动化的计算机方法,用于从运动员的MR图像中对个体大腿骨骼肌进行语义分割。我们的数据库由697名精英运动员大腿的697张图像组成。这些图像被随机分为训练数据集(70%)、验证数据集(10%)和测试数据集(20%)。通过手动标注15个对象类别为每个图像生成一个标签图像:12种不同的骨骼肌、脂肪、骨骼以及血管和神经。使用验证数据集,从三种不同的语义分割模型中选择了DeepLab v3+作为分割个体大腿骨骼肌的基础模型。DeepLab v3+中的特征提取器也被优化为ResNet50。所提出方法的平均杰卡德指数和骰子系数分别为0.853和0.916,显著高于传统DeepLab v3+的指数(杰卡德指数:0.810,p <.001;骰子系数:0.887,p <.001)。所提出的方法在15个目标类别的平均面积误差为3.12%,有助于从MR图像评估骨骼肌横截面积。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验