Suppr超能文献

一种使用机器学习对跨模型和提前期的概率天气预报进行后处理的框架。

A framework for probabilistic weather forecast post-processing across models and lead times using machine learning.

作者信息

Kirkwood Charlie, Economou Theo, Odbert Henry, Pugeault Nicolas

机构信息

College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK.

Met Office, Exeter, UK.

出版信息

Philos Trans A Math Phys Eng Sci. 2021 Apr 5;379(2194):20200099. doi: 10.1098/rsta.2020.0099. Epub 2021 Feb 15.

Abstract

Forecasting the weather is an increasingly data-intensive exercise. Numerical weather prediction (NWP) models are becoming more complex, with higher resolutions, and there are increasing numbers of different models in operation. While the forecasting skill of NWP models continues to improve, the number and complexity of these models poses a new challenge for the operational meteorologist: how should the information from all available models, each with their own unique biases and limitations, be combined in order to provide stakeholders with well-calibrated probabilistic forecasts to use in decision making? In this paper, we use a road surface temperature example to demonstrate a three-stage framework that uses machine learning to bridge the gap between sets of separate forecasts from NWP models and the 'ideal' forecast for decision support: probabilities of future weather outcomes. First, we use quantile regression forests to learn the error profile of each numerical model, and use these to apply empirically derived probability distributions to forecasts. Second, we combine these probabilistic forecasts using quantile averaging. Third, we interpolate between the aggregate quantiles in order to generate a full predictive distribution, which we demonstrate has properties suitable for decision support. Our results suggest that this approach provides an effective and operationally viable framework for the cohesive post-processing of weather forecasts across multiple models and lead times to produce a well-calibrated probabilistic output. This article is part of the theme issue 'Machine learning for weather and climate modelling'.

摘要

天气预报正日益成为一项数据密集型工作。数值天气预报(NWP)模型变得越来越复杂,分辨率更高,且运行中的不同模型数量也在增加。虽然NWP模型的预报技能持续提高,但这些模型的数量和复杂性给业务气象学家带来了新挑战:应如何将来自所有可用模型(每个模型都有其独特偏差和局限性)的信息进行整合,以便为利益相关者提供经过良好校准的概率预报,供其在决策中使用?在本文中,我们以路面温度为例,展示了一个三阶段框架,该框架利用机器学习来弥合NWP模型的单独预报集与用于决策支持的“理想”预报(未来天气结果的概率)之间的差距。首先,我们使用分位数回归森林来了解每个数值模型的误差分布,并利用这些分布将经验推导的概率分布应用于预报。其次,我们使用分位数平均法来合并这些概率预报。第三,我们在汇总分位数之间进行插值,以生成完整的预测分布,我们证明该分布具有适合决策支持的特性。我们的结果表明,这种方法为跨多个模型和提前期的天气预报进行连贯后处理提供了一个有效且可行的框架,以产生经过良好校准的概率输出。本文是“用于天气和气候建模的机器学习”主题特刊的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a717/7898129/7184731f8a2d/rsta20200099-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验