Lindquist Martin A, Krishnan Anjali, López-Solà Marina, Jepma Marieke, Woo Choong-Wan, Koban Leonie, Roy Mathieu, Atlas Lauren Y, Schmidt Liane, Chang Luke J, Reynolds Losin Elizabeth A, Eisenbarth Hedwig, Ashar Yoni K, Delk Elizabeth, Wager Tor D
Johns Hopkins University, USA.
University of Colorado Boulder, USA; Brooklyn College of the City University of New York, USA.
Neuroimage. 2017 Jan 15;145(Pt B):274-287. doi: 10.1016/j.neuroimage.2015.10.074. Epub 2015 Nov 17.
Multivariate pattern analysis (MVPA) has become an important tool for identifying brain representations of psychological processes and clinical outcomes using fMRI and related methods. Such methods can be used to predict or 'decode' psychological states in individual subjects. Single-subject MVPA approaches, however, are limited by the amount and quality of individual-subject data. In spite of higher spatial resolution, predictive accuracy from single-subject data often does not exceed what can be accomplished using coarser, group-level maps, because single-subject patterns are trained on limited amounts of often-noisy data. Here, we present a method that combines population-level priors, in the form of biomarker patterns developed on prior samples, with single-subject MVPA maps to improve single-subject prediction. Theoretical results and simulations motivate a weighting based on the relative variances of biomarker-based prediction-based on population-level predictive maps from prior groups-and individual-subject, cross-validated prediction. Empirical results predicting pain using brain activity on a trial-by-trial basis (single-trial prediction) across 6 studies (N=180 participants) confirm the theoretical predictions. Regularization based on a population-level biomarker-in this case, the Neurologic Pain Signature (NPS)-improved single-subject prediction accuracy compared with idiographic maps based on the individuals' data alone. The regularization scheme that we propose, which we term group-regularized individual prediction (GRIP), can be applied broadly to within-person MVPA-based prediction. We also show how GRIP can be used to evaluate data quality and provide benchmarks for the appropriateness of population-level maps like the NPS for a given individual or study.
多变量模式分析(MVPA)已成为一种重要工具,可利用功能磁共振成像(fMRI)及相关方法来识别心理过程和临床结果的脑表征。此类方法可用于预测或“解码”个体受试者的心理状态。然而,单受试者MVPA方法受到个体受试者数据的数量和质量的限制。尽管具有更高的空间分辨率,但单受试者数据的预测准确性往往不超过使用更粗糙的组水平图谱所能达到的水平,因为单受试者模式是在有限数量的通常有噪声的数据上进行训练的。在此,我们提出一种方法,该方法将群体水平的先验知识(以前样本中开发的生物标志物模式的形式)与单受试者MVPA图谱相结合,以提高单受试者预测能力。理论结果和模拟促使基于生物标志物预测的相对方差进行加权,该预测基于以前组的群体水平预测图谱以及个体受试者的交叉验证预测。在6项研究(N = 180名参与者)中,基于逐次试验的脑活动预测疼痛的实证结果(单次试验预测)证实了理论预测。与仅基于个体数据的个性化图谱相比,基于群体水平生物标志物(在这种情况下为神经病理性疼痛特征(NPS))的正则化提高了单受试者预测准确性。我们提出的正则化方案,我们称之为组正则化个体预测(GRIP),可广泛应用于基于个体内MVPA的预测。我们还展示了GRIP如何用于评估数据质量,并为像NPS这样的群体水平图谱对于给定个体或研究的适用性提供基准。