Suppr超能文献

用于解码结直肠癌中非编码RNA机制的单细胞转录组学方法

Single-Cell Transcriptomic Approaches for Decoding Non-Coding RNA Mechanisms in Colorectal Cancer.

作者信息

Gondal Mahnoor Naseer, Farooqi Hafiz Muhammad Umer

机构信息

Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.

Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Noncoding RNA. 2025 Mar 10;11(2):24. doi: 10.3390/ncrna11020024.

Abstract

Non-coding RNAs (ncRNAs) play crucial roles in colorectal cancer (CRC) development and progression. Recent developments in single-cell transcriptome profiling methods have revealed surprising levels of expression variability among seemingly homogeneous cells, suggesting the existence of many more cell types than previously estimated. This review synthesizes recent advances in ncRNA research in CRC, emphasizing single-cell bioinformatics approaches for their analysis. We explore computational methods and tools used for ncRNA identification, characterization, and functional prediction in CRC, with a focus on single-cell RNA sequencing (scRNA-seq) data. The review highlights key bioinformatics strategies, including sequence-based and structure-based approaches, machine learning applications, and multi-omics data integration. We discuss how these computational techniques can be applied to analyze differential expression, perform functional enrichment, and construct regulatory networks involving ncRNAs in CRC. Additionally, we examine the role of bioinformatics in leveraging ncRNAs as diagnostic and prognostic biomarkers for CRC. We also discuss recent scRNA-seq studies revealing ncRNA heterogeneity in CRC. This review aims to provide a comprehensive overview of the current state of single-cell bioinformatics in ncRNA CRC research and outline future directions in this rapidly evolving field, emphasizing the integration of computational approaches with experimental validation to advance our understanding of ncRNA biology in CRC.

摘要

非编码RNA(ncRNAs)在结直肠癌(CRC)的发生和发展中起着关键作用。单细胞转录组分析方法的最新进展揭示了看似同质的细胞之间惊人的表达变异性水平,这表明存在比先前估计更多的细胞类型。本综述综合了CRC中ncRNA研究的最新进展,重点强调了用于其分析的单细胞生物信息学方法。我们探索了用于CRC中ncRNA鉴定、表征和功能预测的计算方法和工具,重点关注单细胞RNA测序(scRNA-seq)数据。该综述突出了关键的生物信息学策略,包括基于序列和基于结构的方法、机器学习应用以及多组学数据整合。我们讨论了这些计算技术如何应用于分析差异表达、进行功能富集以及构建CRC中涉及ncRNAs的调控网络。此外,我们研究了生物信息学在将ncRNAs用作CRC诊断和预后生物标志物方面的作用。我们还讨论了最近揭示CRC中ncRNA异质性的scRNA-seq研究。本综述旨在全面概述ncRNA CRC研究中单细胞生物信息学的当前状态,并概述这一快速发展领域的未来方向,强调将计算方法与实验验证相结合,以推进我们对CRC中ncRNA生物学的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/257d/11932299/d8c36928e50f/ncrna-11-00024-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验