Suppr超能文献

使用泛函线性微分方程对轨迹进行建模。

MODELING TRAJECTORIES USING FUNCTIONAL LINEAR DIFFERENTIAL EQUATIONS.

作者信息

Wrobel Julia, Sauerbrei Britton, Kirk Eric A, Guo Jian-Zhong, Hantman Adam, Goldsmith Jeff

机构信息

Department of Biostatistics and Bioinformatics, Emory University.

Department of Neurosciences, Case Western Reserve University.

出版信息

Ann Appl Stat. 2024 Dec;18(4):3425-3443. doi: 10.1214/24-aoas1943. Epub 2024 Oct 31.

Abstract

We are motivated by a study that seeks to better understand the dynamic relationship between muscle activation and paw position during locomotion. For each gait cycle in this experiment, activation in the biceps and triceps is measured continuously and in parallel with paw position as a mouse trotted on a treadmill. We propose an innovative general regression method that draws from both ordinary differential equations and functional data analysis to model the relationship between these functional inputs and responses as a dynamical system that evolves over time. Specifically, our model addresses gaps in both literatures and borrows strength across curves estimating ODE parameters across all curves simultaneously rather than separately modeling each functional observation. Our approach compares favorably to related functional data methods in simulations and in cross-validated predictive accuracy of paw position in the gait data. In the analysis of the gait cycles, we find that paw speed and position are dynamically influenced by inputs from the biceps and triceps muscles and that the effect of muscle activation persists beyond the activation itself.

摘要

我们的研究动机源于一项旨在更好地理解运动过程中肌肉激活与爪子位置之间动态关系的研究。在该实验的每个步态周期中,当小鼠在跑步机上小跑时,会连续并行测量二头肌和三头肌的激活情况以及爪子位置。我们提出了一种创新的通用回归方法,该方法借鉴了常微分方程和函数数据分析,将这些函数输入与响应之间的关系建模为一个随时间演化的动态系统。具体而言,我们的模型弥补了这两个文献中的空白,并通过同时估计所有曲线的常微分方程参数来增强跨曲线的能力,而不是分别对每个函数观测值进行建模。在模拟以及步态数据中爪子位置的交叉验证预测准确性方面,我们的方法优于相关的函数数据方法。在步态周期分析中,我们发现爪子速度和位置受到二头肌和三头肌肌肉输入的动态影响,并且肌肉激活的影响在激活本身之后仍然存在。

相似文献

1
MODELING TRAJECTORIES USING FUNCTIONAL LINEAR DIFFERENTIAL EQUATIONS.使用泛函线性微分方程对轨迹进行建模。
Ann Appl Stat. 2024 Dec;18(4):3425-3443. doi: 10.1214/24-aoas1943. Epub 2024 Oct 31.

本文引用的文献

2
Kernel Ordinary Differential Equations.核常微分方程
J Am Stat Assoc. 2022;117(540):1711-1725. doi: 10.1080/01621459.2021.1882466. Epub 2021 Apr 27.
3
Online control of reach accuracy in mice.在线控制小鼠的抓握准确性。
J Neurophysiol. 2020 Dec 1;124(6):1637-1655. doi: 10.1152/jn.00324.2020. Epub 2020 Sep 30.
5
Network Reconstruction From High-Dimensional Ordinary Differential Equations.基于高维常微分方程的网络重构
J Am Stat Assoc. 2017;112(520):1697-1707. doi: 10.1080/01621459.2016.1229197. Epub 2017 Aug 7.
7
Variable selection in the functional linear concurrent model.函数线性并发模型中的变量选择
Stat Med. 2017 Jun 30;36(14):2237-2250. doi: 10.1002/sim.7254. Epub 2017 Feb 17.
10
Functional Additive Mixed Models.功能加性混合模型
J Comput Graph Stat. 2015 Apr 1;24(2):477-501. doi: 10.1080/10618600.2014.901914.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验