Suppr超能文献

肌电图信号采集与处理综述

Review on electromyography signal acquisition and processing.

作者信息

Gohel Vidhi, Mehendale Ninad

机构信息

K. J. Somaiya College of Engineering, Mumbai, India.

出版信息

Biophys Rev. 2020 Nov 10;12(6):1361-7. doi: 10.1007/s12551-020-00770-w.

Abstract

Electromyography (EMG) is a technique for recording biomedical electrical signals obtained from the neuromuscular activities. These signals are used to monitor medical abnormalities and activation levels, and also to analyze the biomechanics of any animal movements. In this article, we provide a short review of EMG signal acquisition and processing techniques. The average efficiency of capture of EMG signals with current technologies is around 70%. Once the signal is captured, signal processing algorithms then determine the recognition accuracy, with which signals are decoded for their corresponding purpose (e.g., moving robotic arm, speech recognition, gait analysis). The recognition accuracy can go as high as 99.8%. The accuracy with which the EMG signal is decoded has already crossed 99%, and with improvements in deep learning technology, there is a large scope for improvement in the design hardware that can efficiently capture EMG signals.

摘要

肌电图(EMG)是一种记录从神经肌肉活动中获取的生物医学电信号的技术。这些信号用于监测医学异常和激活水平,还用于分析任何动物运动的生物力学。在本文中,我们对肌电图信号采集和处理技术进行简要综述。当前技术采集肌电图信号的平均效率约为70%。一旦信号被采集,信号处理算法便会确定识别准确率,据此将信号解码以用于相应目的(例如,移动机械臂、语音识别、步态分析)。识别准确率可高达99.8%。肌电图信号的解码准确率已超过99%,随着深度学习技术的进步,在能够有效采集肌电图信号的硬件设计方面仍有很大的改进空间。

相似文献

1
Review on electromyography signal acquisition and processing.肌电图信号采集与处理综述
Biophys Rev. 2020 Nov 10;12(6):1361-7. doi: 10.1007/s12551-020-00770-w.
8
10

引用本文的文献

10
Age-related breakdown in networks of inter-muscular coordination.与年龄相关的肌肉间协调网络的衰退。
Geroscience. 2025 Apr;47(2):1615-1639. doi: 10.1007/s11357-024-01331-9. Epub 2024 Sep 17.

本文引用的文献

2
Tripolar concentric EEG electrodes reduce noise.三极同心 EEG 电极可降低噪声。
Clin Neurophysiol. 2020 Jan;131(1):193-198. doi: 10.1016/j.clinph.2019.10.022. Epub 2019 Nov 22.
5
Characterization of a benchmark database for myoelectric movement classification.用于肌电运动分类的基准数据库的特征描述
IEEE Trans Neural Syst Rehabil Eng. 2015 Jan;23(1):73-83. doi: 10.1109/TNSRE.2014.2328495. Epub 2014 Jun 4.
7
Muscle computer interfaces for driver distraction reduction.用于减少驾驶员分神的肌肉计算机接口。
Comput Methods Programs Biomed. 2013 May;110(2):137-49. doi: 10.1016/j.cmpb.2012.11.002. Epub 2013 Jan 3.
8
Signal acquisition and processing techniques for sEMG based silent speech recognition.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:4848-51. doi: 10.1109/IEMBS.2011.6091201.
9
High-yield decomposition of surface EMG signals.表面肌电信号的高效分解。
Clin Neurophysiol. 2010 Oct;121(10):1602-15. doi: 10.1016/j.clinph.2009.11.092. Epub 2010 Apr 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验