Suppr超能文献

一种基于改进的FESS-YOLOv8n神经网络的绵羊行为识别方法。

A Sheep Behavior Recognition Approach Based on Improved FESS-YOLOv8n Neural Network.

作者信息

Guo Xiuru, Ma Chunyue, Wang Chen, Cui Xiaochen, Xu Guangdi, Wang Ruimin, Liu Yuqi, Sun Bo, Wang Zhijun, Guo Xuchao

机构信息

College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China.

Apple Technology Innovation Center of Shandong Province, Taian 271018, China.

出版信息

Animals (Basel). 2025 Mar 20;15(6):893. doi: 10.3390/ani15060893.

Abstract

Sheep are an important breed of livestock in the northern regions of China, providing humans with nutritious meat and by-products. Therefore, it is essential to ensure the health status of sheep. Research has shown that the individual and group behaviors of sheep can reflect their overall health status. However, as the scale of farming expands, traditional behavior detection methods based on manual observation and those that employ contact-based devices face challenges, including poor real-time performance and unstable accuracy, making them difficult to meet the current demands. To address these issues, this paper proposes a sheep behavior detection model, Fess-YOLOv8n, based on an enhanced YOLOv8n neural network. On the one hand, this approach achieves a lightweight model by introducing the FasterNet structure and the selective channel down-sampling module (SCDown). On the other hand, it utilizes the efficient multi-scale attention mechanism (EMA)as well as the spatial and channel synergistic attention module (SCSA) to improve recognition performance. The results on a self-built dataset show that Fess-YOLOv8n reduced the model size by 2.56 MB and increased the detection accuracy by 4.7%. It provides technical support for large-scale sheep behavior detection and lays a foundation for sheep health monitoring.

摘要

绵羊是中国北方地区重要的家畜品种,为人类提供营养丰富的肉类和副产品。因此,确保绵羊的健康状况至关重要。研究表明,绵羊的个体和群体行为能够反映其整体健康状况。然而,随着养殖规模的扩大,基于人工观察的传统行为检测方法以及使用基于接触式设备的方法面临挑战,包括实时性差和准确性不稳定,难以满足当前需求。为了解决这些问题,本文提出了一种基于增强型YOLOv8n神经网络的绵羊行为检测模型Fess-YOLOv8n。一方面,该方法通过引入FasterNet结构和选择性通道下采样模块(SCDown)实现了模型轻量化。另一方面,它利用高效多尺度注意力机制(EMA)以及空间和通道协同注意力模块(SCSA)来提高识别性能。在自建数据集上的结果表明,Fess-YOLOv8n将模型大小减少了2.56 MB,检测准确率提高了4.7%。它为大规模绵羊行为检测提供了技术支持,为绵羊健康监测奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5e9/11939809/66f5c1ef1dde/animals-15-00893-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验