Suppr超能文献

植物茎尖干细胞中的热应激反应与转座子调控

Heat stress response and transposon control in plant shoot stem cells.

作者信息

Nguyen Vu Hoang, Mittelsten Scheid Ortrun, Gutzat Ruben

机构信息

Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna 1030, Austria.

出版信息

Plant Physiol. 2025 Mar 28;197(4). doi: 10.1093/plphys/kiaf110.

Abstract

Plants have an impressive repertoire to react to stress conditions that limit regular growth. Elevated temperatures beyond the optimal range cause rapid and specific transcriptional responses, resulting in developmental alterations and plasticity. Heat stress also causes chromatin decondensation and activation of some transposable elements (TEs), endangering genomic integrity. This is especially risky for stem cells in the shoot apical meristem (SAM) that potentially contribute to the next generation. We examined how the heat stress response in SAM stem cells of Arabidopsis (Arabidopsis thaliana) is different from that in other tissues and whether the elements of epigenetic TE control active in the meristem are involved in specific heat protection of stem cells. Using fluorescence-activated nuclear sorting to isolate and characterize SAM stem cells after exposure to conditions that activate a heat-responsive TE, we found that SAM stem cells maintain their developmental program and suppress the heat-response pathways dominating in surrounding somatic cells. Furthermore, mutants defective in DNA methylation recovered less efficiently from heat stress and persistently activated heat response factors and heat-responsive TEs. Heat stress also induced epimutations at the level of DNA methylation, especially in the CHG sequence context. Regions with modified DNA methylation patterns remained altered for at least 3 wk beyond the stress. These findings urge for disentangling cell type-specific responses under different stress types, especially for stem cells as bridges to the next generation.

摘要

植物对限制正常生长的胁迫条件具有令人印象深刻的应对能力。超出最佳范围的高温会引发快速且特定的转录反应,导致发育改变和可塑性变化。热胁迫还会导致染色质解聚以及一些转座元件(TEs)的激活,危及基因组完整性。这对于茎尖分生组织(SAM)中可能产生下一代的干细胞来说尤其危险。我们研究了拟南芥(Arabidopsis thaliana)SAM干细胞中的热胁迫反应与其他组织中的热胁迫反应有何不同,以及在分生组织中活跃的表观遗传TE控制元件是否参与了干细胞的特定热保护。通过使用荧光激活细胞核分选技术,在暴露于激活热响应TE的条件后分离并鉴定SAM干细胞,我们发现SAM干细胞维持其发育程序,并抑制周围体细胞中占主导地位的热响应途径。此外,DNA甲基化缺陷的突变体从热胁迫中恢复的效率较低,并且持续激活热响应因子和热响应TEs。热胁迫还在DNA甲基化水平上诱导了表观突变,尤其是在CHG序列背景下。DNA甲基化模式发生改变的区域在胁迫结束后至少3周内仍保持改变状态。这些发现促使我们去厘清不同胁迫类型下细胞类型特异性反应,尤其是对于作为连接下一代桥梁的干细胞而言。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d08c/11997658/b87eb3a246bf/kiaf110f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验