Mayerhoefer Elisabeth, Parajuli Himalaya, Cimpan Mihaela-Roxana, Costea Daniela Elena, Dongre Harsh Nitin, Krueger Anke
Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany.
The Gade Laboratory for Pathology and Centre for Cancer Biomarkers (CCBIO), Department of Clinical Medicine, University of Bergen, Jonas Lies vei 87, Bergen, 5021, Norway.
Angew Chem Int Ed Engl. 2025 Jun 17;64(25):e202501202. doi: 10.1002/anie.202501202. Epub 2025 May 19.
Utilizing nanoparticles as innovative theranostic agents for biomedical applications requires full control over the material's properties to dictate their interactions within a biological environment. Owing to its versatile surface chemistry and high biocompatibility, nanodiamond (ND) represents a promising platform for novel healthcare treatments. To ensure the performance and safety of NDs, their properties and behavior must remain unchanged upon administration, a key challenge in nanomedicine. Recently, zwitterionic surface modifications have emerged as new strategies to substantially improve protein-repelling properties and biocompatibility of nanomaterials. Using for the first time covalently conjugated zwitterionic dipeptides as surface modulators for ND particles, we were able to provide a readily accessible, reproducible, and tunable functionalization. The obtained particles demonstrate enhanced colloidal stability and conservation of particle size over a broad pH range and in different protein-containing media compared to the starting material. By simple selection of different dipeptides, we can carefully tailor the biocompatibility and cellular uptake of functionalized NDs. We reveal the functionalized NDs' behavior in biologically relevant 3D organotypic models and how different dipeptide-functionalized NDs interact with squamous epithelium ex vivo. The results pave the way for various applications, e.g., biosensing, tissue engineering or targeted drug delivery of these highly biologically suitable nanoparticles.
将纳米颗粒用作生物医学应用中的创新型诊疗试剂,需要对材料的性质进行全面控制,以确定它们在生物环境中的相互作用。由于其具有多功能的表面化学性质和高生物相容性,纳米金刚石(ND)是新型医疗保健治疗的一个有前景的平台。为确保纳米金刚石的性能和安全性,其性质和行为在给药后必须保持不变,这是纳米医学中的一个关键挑战。最近,两性离子表面修饰已成为大幅改善纳米材料抗蛋白质性能和生物相容性的新策略。我们首次使用共价共轭的两性离子二肽作为纳米金刚石颗粒的表面调节剂,从而能够实现易于操作、可重复且可调的功能化。与起始材料相比,所得颗粒在较宽的pH范围内以及在不同的含蛋白质介质中表现出增强的胶体稳定性和粒径保持性。通过简单选择不同的二肽,我们可以精心调整功能化纳米金刚石的生物相容性和细胞摄取。我们揭示了功能化纳米金刚石在生物相关的三维器官型模型中的行为,以及不同二肽功能化的纳米金刚石在体外与鳞状上皮的相互作用。这些结果为这些高度适合生物应用的纳米颗粒的各种应用铺平了道路,例如生物传感、组织工程或靶向药物递送。