Suppr超能文献

生物合成与化学合成的氧化锌纳米颗粒预防耳念珠菌生物膜的比较评估

Comparative evaluation of biologically and chemically synthesized zinc oxide nanoparticles for preventing Candida auris biofilm.

作者信息

Fayed Bahgat, El-Sayed Hoda S, Luo Shanshan, Reda Aisha E

机构信息

Chemistry of Natural and Microbial Product, National Research Centre, Dokki, Cairo, 12622, Egypt.

Dairy Department, National Research Centre, Dokki, Cairo, 12622, Egypt.

出版信息

Biometals. 2025 Mar 31. doi: 10.1007/s10534-025-00678-6.

Abstract

Candidozyma auris (formerly Candida auris) is a multidrug-resistant yeast that poses a significant global health threat due to its ability to form biofilms and resist various antifungal treatments. This study evaluates and compares the antifungal efficacy of biologically synthesized zinc oxide nanoparticles (ZnO-NP-B) and chemically synthesized ZnO nanoparticles (ZnO-NP-C1 and ZnO-NP-C2), developed using the dry-wet chemical method and sol-gel method, respectively. ZnO-NP-B was synthesized using Lactobacillus gasseri. The nanoparticles were characterized for size, charge, and morphology using Particle Size Analyzer, photon correlation spectroscopy with a 90 Plus Zetasizer, and scanning electron microscopy (SEM), respectively. The antifungal activity was assessed through minimum inhibitory concentration (MIC) determination, biofilm inhibition assays by XTT assay, and gene expression analysis. ZnO-NP-C1 exhibited the highest antifungal activity against C. auris planktonic cells, with a MIC value of 61.9 ± 3.3 µg/ml, followed by ZnO-NP-C2 (151 ± 7.83 µg/ml), whereas ZnO-NP-B showed limited efficacy (MIC = 1 mg/ml). Chemically synthesized ZnO-NPs, particularly ZnO-NP-C2, did not induce overexpression of resistance genes (CDR1, MDR1, ERG2, ERG11, FKS1, CHS1), whereas ZnO-NP-B triggered their upregulation, potentially promoting resistance. ZnO-NP-C1 was the most effective in preventing biofilm formation, reducing C. auris adhesion by 67.9 ± 2.35% at 150 µg/ml, while ZnO-NP-B exhibited negligible inhibition. Gene expression analysis further confirmed that ZnO-NP-C1 significantly downregulated adhesive genes (ALS5, IFF4, CSA1) by up to 0.37 ± 0.006, 0.043 ± 0.002, and 0.06 ± 0.0004, respectively. These findings highlight the potential of ZnO-NP-C1 as a promising antifungal agent for preventing C. auris biofilms, emphasizing the critical role of synthesis methods in optimizing nanoparticle properties for antifungal applications.

摘要

耳念珠菌(以前称为耳道假丝酵母菌)是一种多重耐药酵母,因其能够形成生物膜并抵抗各种抗真菌治疗,对全球健康构成重大威胁。本研究评估并比较了生物合成的氧化锌纳米颗粒(ZnO-NP-B)和化学合成的氧化锌纳米颗粒(ZnO-NP-C1和ZnO-NP-C2)的抗真菌效果,它们分别采用干湿化学法和溶胶-凝胶法制备。ZnO-NP-B是使用加氏乳杆菌合成的。分别使用粒度分析仪、配备90 Plus Zetasizer的光子相关光谱仪和扫描电子显微镜(SEM)对纳米颗粒的尺寸、电荷和形态进行了表征。通过最小抑菌浓度(MIC)测定、XTT法进行的生物膜抑制试验以及基因表达分析来评估抗真菌活性。ZnO-NP-C1对耳念珠菌浮游细胞表现出最高的抗真菌活性,MIC值为61.9±3.3μg/ml,其次是ZnO-NP-C2(151±7.83μg/ml),而ZnO-NP-B的效果有限(MIC = 1mg/ml)。化学合成的ZnO纳米颗粒,特别是ZnO-NP-C2,不会诱导耐药基因(CDR1、MDR1、ERG2、ERG11、FKS1、CHS1)的过表达,而ZnO-NP-B会引发它们的上调,可能促进耐药性。ZnO-NP-C1在防止生物膜形成方面最有效,在150μg/ml时可将耳念珠菌的粘附减少67.9±2.35%,而ZnO-NP-B的抑制作用可忽略不计。基因表达分析进一步证实,ZnO-NP-C1分别使粘附基因(ALS5、IFF4、CSA1)显著下调高达0.37±0.006、0.043±0.002和0.06±0.0004。这些发现突出了ZnO-NP-C1作为一种有前景的抗真菌剂用于预防耳念珠菌生物膜的潜力,强调了合成方法在优化纳米颗粒抗真菌应用性能方面的关键作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验