Suppr超能文献

迈向一种以人类为中心的协同设计方法,用于人工智能检测放射治疗中计划剂量与实际交付剂量之间的差异。

Toward a human-centric co-design methodology for AI detection of differences between planned and delivered dose in radiotherapy.

作者信息

Heising Luca M, Verhaegen Frank, Scheib Stefan G, Jacobs Maria J G, Ou Carol X J, Mottarella Viola, Chong Yin-Ho, Zamburlini Mariangela, Nijsten Sebastiaan M J J G, Swinnen Ans, Öllers Michel, Wolfs Cecile J A

机构信息

Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands.

Department of Management, Tilburg School of Economics and Management, Tilburg University, Tilburg, The Netherlands.

出版信息

J Appl Clin Med Phys. 2025 Jun;26(6):e70071. doi: 10.1002/acm2.70071. Epub 2025 Mar 31.

Abstract

INTRODUCTION

Many artificial intelligence (AI) solutions have been proposed to enhance the radiotherapy (RT) workflow, but limited applications have been implemented to date, suggesting an implementation gap. One contributing factor to this gap is a misalignment between AI systems and their users. To address the AI implementation gap, we propose a human-centric methodology, novel in RT, for an interface design of an AI-driven RT treatment error detection system.

METHODS

A 5-day design sprint was set up with a multi-disciplinary team of clinical and research staff and a commercial company. In the design sprint, an interface was prototyped to aid medical physicists in catching treatment errors during daily treatment fractions using dose-guided RT (DGRT) with a portal imager.

RESULTS

The design sprint resulted in a simulated prototype of an interface supported by all stakeholders. Important features of an interface include the AI certainty metric, explainable AI features, feedback options, and decision aid. The prototype was well-received by expert users.

CONCLUSION/DISCUSSION: Using a co-creation strategy, which is a novel approach in RT, we were able to prototype a novel human-interpretable interface to detect RT treatment errors and aid the DGRT workflow. Users showed confidence that the overall design method and the proposed prototype could lead to a viable clinical implementation.

摘要

引言

已经提出了许多人工智能(AI)解决方案来改进放射治疗(RT)工作流程,但迄今为止实施的应用有限,这表明存在实施差距。造成这一差距的一个因素是人工智能系统与其用户之间的不一致。为了弥补人工智能实施差距,我们提出了一种以用户为中心的方法,这在放射治疗中是新颖的,用于人工智能驱动的放射治疗治疗误差检测系统的界面设计。

方法

与临床和研究人员以及一家商业公司的多学科团队进行了为期5天的设计冲刺。在设计冲刺中,制作了一个界面原型,以帮助医学物理师在使用带有门静脉成像仪的剂量引导放射治疗(DGRT)进行每日治疗分次时发现治疗误差。

结果

设计冲刺产生了一个得到所有利益相关者支持的界面模拟原型。界面的重要特征包括人工智能确定性指标、可解释的人工智能特征、反馈选项和决策辅助。该原型受到了专家用户的好评。

结论/讨论:使用共同创造策略,这在放射治疗中是一种新颖的方法,我们能够制作一个新颖的、人类可解释的界面原型,以检测放射治疗治疗误差并辅助剂量引导放射治疗工作流程。用户对整体设计方法和所提出的原型能够导致可行的临床实施表示有信心。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验