Suppr超能文献

利用机器学习和神经心理测量数据检测儿童和青少年精神病中的形式思维障碍

Detection of formal thought disorders in child and adolescent psychosis using machine learning and neuropsychometric data.

作者信息

Zakowicz Przemysław T, Brzezicki Maksymilian A, Levidiotis Charalampos, Kim Sojeong, Wejkuć Oskar, Wisniewska Zuzanna, Biernaczyk Dominika, Remberk Barbara

机构信息

Collegium Medicum, University of Zielona Gora, Zielona Góra, Poland.

Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.

出版信息

Front Psychiatry. 2025 Mar 17;16:1550571. doi: 10.3389/fpsyt.2025.1550571. eCollection 2025.

Abstract

INTRODUCTION

Formal Thought Disorder (FTD) is a significant clinical feature of early-onset psychosis, often associated with poorer outcomes. Current diagnostic methods rely on clinical assessment, which can be subjective and time-consuming. This study aimed to investigate the potential of neuropsychological tests and machine learning to differentiate individuals with and without FTD.

METHODS

A cohort of 27 young people with early-onset psychosis was included. Participants underwent neuropsychological assessment using the Iowa Gambling Task (IGT) and Simple Reaction Time (SRT) tasks. A range of machine learning models (Logistic Regression (LR), Support Vector Machines (SVM), Random Forest (RF) and eXtreme Gradient Boosting (XGBoost)) were employed to classify participants into FTD-positive and FTD-negative groups based on these neuropsychological measures and their antipsychotic regimen (medication load in chlorpromazine equivalents).

RESULTS

The best performing machine learning model was LR with mean +/- standard deviation of cross validation Receiver Operating Characteristic Area Under Curve (ROC AUC) score of 0.850 (+/- 0.133), indicating moderate-to-good discriminatory performance. Key features contributing to the model's accuracy included IGT card selections, SRT reaction time (most notably standard deviation) and chlorpromazine equivalent milligrams. The model correctly classified 24 out of 27 participants.

DISCUSSION

This study demonstrates the feasibility of using neuropsychological tests and machine learning to identify FTD in early-onset psychosis. Early identification of FTD may facilitate targeted interventions and improve clinical outcomes. Further research is needed to validate these findings in larger, more diverse populations and to explore the underlying neurocognitive mechanisms.

摘要

引言

形式思维障碍(FTD)是早发性精神病的一个重要临床特征,通常与较差的预后相关。目前的诊断方法依赖于临床评估,这可能具有主观性且耗时。本研究旨在探讨神经心理学测试和机器学习在区分有无FTD个体方面的潜力。

方法

纳入了一组27名早发性精神病的年轻人。参与者接受了使用爱荷华赌博任务(IGT)和简单反应时(SRT)任务的神经心理学评估。采用一系列机器学习模型(逻辑回归(LR)、支持向量机(SVM)、随机森林(RF)和极端梯度提升(XGBoost)),根据这些神经心理学测量指标及其抗精神病治疗方案(以氯丙嗪等效剂量表示的药物负荷)将参与者分为FTD阳性和FTD阴性组。

结果

表现最佳的机器学习模型是LR,交叉验证受试者工作特征曲线下面积(ROC AUC)得分的均值±标准差为0.850(±0.133),表明具有中度至良好的区分性能。对模型准确性有贡献的关键特征包括IGT卡片选择、SRT反应时(最显著的是标准差)和氯丙嗪等效毫克数。该模型正确分类了27名参与者中的24名。

讨论

本研究证明了使用神经心理学测试和机器学习在早发性精神病中识别FTD的可行性。FTD的早期识别可能有助于进行有针对性的干预并改善临床结局。需要进一步的研究在更大、更多样化的人群中验证这些发现,并探索潜在的神经认知机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af82/11955656/c0a3a5d7221c/fpsyt-16-1550571-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验