Yan Yujia, Yan Tao, Wang Feng, Zhu Yuhan, Li Shuhui, Cai Yuchen, Zhang Fuyuan, Wang Yanrong, Liu Xiaolin, Xu Kai, He Jun, Zhan Xueying, Lin Jia, Wang Zhenxing
Department of Physics, Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, P. R. China.
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
Nano Lett. 2025 Apr 16;25(15):6125-6133. doi: 10.1021/acs.nanolett.5c00220. Epub 2025 Apr 3.
Two-dimensional (2D) semiconductors are potential candidates for advanced technology nodes, but their integration with silicon lines remains a significant challenge. Here, we present a high- dielectric van der Waals encapsulation strategy for the fabrication of 2D semiconductor-based complementary field-effect transistors (CFETs) compatible with established processes. This technique, involving the transfer of a high- dielectric onto 2D semiconductors, protects channels from polymer contamination, enables O plasma surface cleaning, and facilitates the following dielectric depositions without doping or damage. The strategy results in heterostructures and devices with reduced surface roughness and is applicable to both p- and n-type semiconductors, including MoS, WS, MoTe, and black phosphorus. Utilizing this method, we have successfully fabricated 2D CFET inverters with a gain of up to 19.54 and power consumption as low as 2.63 nW. Our work paves the way for the integration of 2D semiconductors with silicon technology, therefore accelerating the lab-to-fab transition progress.
二维(2D)半导体是先进技术节点的潜在候选材料,但其与硅线路的集成仍然是一项重大挑战。在此,我们提出一种高介电常数范德华封装策略,用于制造与现有工艺兼容的基于二维半导体的互补场效应晶体管(CFET)。该技术包括将高介电常数材料转移到二维半导体上,可保护沟道免受聚合物污染,实现氧等离子体表面清洁,并有助于后续的介电层沉积,且不会发生掺杂或损伤。该策略可得到表面粗糙度降低的异质结构和器件,适用于p型和n型半导体,包括MoS、WS、MoTe和黑磷。利用这种方法,我们成功制造出增益高达19.54且功耗低至2.63 nW的二维CFET反相器。我们的工作为二维半导体与硅技术的集成铺平了道路,从而加速了从实验室到工厂的转变进程。