Abbas Syed Farhan, Vuong Trinh Thi Le, Kim Kyungeun, Song Boram, Kwak Jin Tae
School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea.
Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea.
Med Image Anal. 2023 Dec;90:102936. doi: 10.1016/j.media.2023.102936. Epub 2023 Aug 25.
In pathology, cancer grading is crucial for patient management and treatment. Recent deep learning methods, based upon convolutional neural networks (CNNs), have shown great potential for automated and accurate cancer diagnosis. However, these do not explicitly utilize tissue/cellular composition, and thus difficult to incorporate the existing knowledge of cancer pathology. In this study, we propose a multi-cell type and multi-level graph aggregation network (MMGA-Net) for cancer grading. Given a pathology image, MMGA-Net constructs multiple cell graphs at multiple levels to represent intra- and inter-cell type relationships and to incorporate global and local cell-to-cell interactions. In addition, it extracts tissue contextual information using a CNN. Then, the tissue and cellular information are fused to predict a cancer grade. The experimental results on two types of cancer datasets demonstrate the effectiveness of MMGA-Net, outperforming other competing models. The results also suggest that the information fusion of multiple cell types and multiple levels via graphs is critical for improved pathology image analysis.
在病理学中,癌症分级对于患者管理和治疗至关重要。基于卷积神经网络(CNN)的近期深度学习方法在自动化和准确的癌症诊断方面显示出巨大潜力。然而,这些方法并未明确利用组织/细胞组成,因此难以纳入现有的癌症病理学知识。在本研究中,我们提出了一种用于癌症分级的多细胞类型和多层次图聚合网络(MMGA-Net)。给定一张病理图像,MMGA-Net在多个层次上构建多个细胞图,以表示细胞内和细胞间类型关系,并纳入全局和局部细胞间相互作用。此外,它使用CNN提取组织上下文信息。然后,将组织和细胞信息融合以预测癌症分级。在两种类型的癌症数据集上的实验结果证明了MMGA-Net的有效性,其性能优于其他竞争模型。结果还表明,通过图进行多细胞类型和多层次的信息融合对于改进病理图像分析至关重要。