Suppr超能文献

基于人工智能的AudaxCeph软件、Dolphin软件以及手动技术在正畸标志点识别和头颅侧位片描记方面的比较准确性。

Comparative accuracy of artificial intelligence-based AudaxCeph software, Dolphin software, and the manual technique for orthodontic landmark identification and tracing of lateral cephalograms.

作者信息

Foroozandeh Maryam, Salemi Fatemeh, Shokri Abbas, Farhadian Nasrin, Aeini Nesa, Hassanzadeh Roghayyeh

机构信息

Department of Oral and Maxillofacial Radiology, Dental School, Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.

Department of Orthodontics, School of Dentistry, Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.

出版信息

Imaging Sci Dent. 2025 Mar;55(1):11-21. doi: 10.5624/isd.20240089. Epub 2024 Dec 6.

Abstract

PURPOSE

The aim of this study was to compare the accuracy of AI-based AudaxCeph software, Dolphin software, and the manual technique for identifying orthodontic landmarks and tracing lateral cephalograms.

MATERIALS AND METHODS

In this cross-sectional study, 23 anatomical landmarks were identified on 60 randomly selected lateral cephalograms, and 5 dental indices, 4 skeletal indices, and 1 soft tissue index were measured. Each cephalogram was traced using 4 different methods: manually, with the Dolphin software, with the AudaxCeph software automatically, and with the AudaxCeph software in semi-automatic mode. The intra-class correlation coefficient (ICC) and Bland-Altman plots were used to evaluate the agreement between methods. Inter-observer and intra-observer agreements, calculated using the ICC, confirmed the accuracy, reliability, and reproducibility of the results.

RESULTS

There was strong agreement among the AudexCeph (semi-automated or automated) AudaxCeph, Dolphin, and manual methods in measuring orthodontic indices, with ICC values consistently above 0.90. Bland-Altman plots confirmed satisfactory agreement between both versions of AudaxCeph (semi-automated and automated) with the manual method, with mean differences close to 0 and about 95% of data points within the limits of agreement. However, the semi-automated AudaxCeph showed greater agreement and precision than the automated version, as indicated by narrower limits of agreement. The ICC values for inter-observer and intra-observer agreements exceeded 0.98 and 0.99, respectively.

CONCLUSION

The semi-automated AudaxCeph software offers a robust and cost-effective solution for cephalometric analysis. Its high accuracy and affordability make it a compelling alternative to Dolphin software and the manual method.

摘要

目的

本研究旨在比较基于人工智能的AudaxCeph软件、Dolphin软件以及手动技术在识别正畸标志点和描绘头颅侧位片方面的准确性。

材料与方法

在这项横断面研究中,在60张随机选取的头颅侧位片上确定了23个解剖标志点,并测量了5个牙齿指标、4个骨骼指标和1个软组织指标。每张头颅侧位片使用4种不同方法进行描绘:手动、使用Dolphin软件、使用AudaxCeph软件自动描绘以及使用AudaxCeph软件半自动描绘。组内相关系数(ICC)和Bland-Altman图用于评估不同方法之间的一致性。使用ICC计算的观察者间和观察者内一致性证实了结果的准确性、可靠性和可重复性。

结果

在测量正畸指标方面,AudaxCeph(半自动或自动)、AudaxCeph、Dolphin和手动方法之间存在高度一致性,ICC值始终高于0.90。Bland-Altman图证实AudaxCeph的两个版本(半自动和自动)与手动方法之间具有令人满意的一致性,平均差异接近0,约95%的数据点在一致性界限内。然而,半自动的AudaxCeph显示出比自动版本更高的一致性和精度,一致性界限更窄表明了这一点。观察者间和观察者内一致性的ICC值分别超过0.98和0.99。

结论

半自动的AudaxCeph软件为头影测量分析提供了一种强大且经济高效的解决方案。其高准确性和可承受性使其成为Dolphin软件和手动方法的有力替代方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c3a/11966017/3e736027ada0/isd-55-11-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验