Suppr超能文献

RoboEM:用于突触分辨率连接组学的自动化 3D 飞行追踪

RoboEM: automated 3D flight tracing for synaptic-resolution connectomics.

机构信息

Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany.

Faculty of Science, Radboud University, Nijmegen, the Netherlands.

出版信息

Nat Methods. 2024 May;21(5):908-913. doi: 10.1038/s41592-024-02226-5. Epub 2024 Mar 21.

Abstract

Mapping neuronal networks from three-dimensional electron microscopy (3D-EM) data still poses substantial reconstruction challenges, in particular for thin axons. Currently available automated image segmentation methods require manual proofreading for many types of connectomic analysis. Here we introduce RoboEM, an artificial intelligence-based self-steering 3D 'flight' system trained to navigate along neurites using only 3D-EM data as input. Applied to 3D-EM data from mouse and human cortex, RoboEM substantially improves automated state-of-the-art segmentations and can replace manual proofreading for more complex connectomic analysis problems, yielding computational annotation cost for cortical connectomes about 400-fold lower than the cost of manual error correction.

摘要

从三维电子显微镜 (3D-EM) 数据中绘制神经元网络仍然存在重大的重建挑战,特别是对于薄轴突而言。目前可用的自动化图像分割方法需要人工校对,以进行许多类型的连接组学分析。在这里,我们介绍了 RoboEM,这是一种基于人工智能的自主 3D“飞行”系统,它仅使用 3D-EM 数据作为输入,经过训练可沿着神经突导航。将 RoboEM 应用于来自小鼠和人类皮层的 3D-EM 数据,可大大改进自动化的最先进分割,并可替代更复杂的连接组学分析问题的人工校对,从而使皮层连接组的计算注释成本比手动纠错的成本低约 400 倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/101c/11093750/5e55a617e209/41592_2024_2226_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验