Suppr超能文献

基于多模态电生理时间序列的可解释睡眠分期。

Explainable Sleep Stage Classification with Multimodal Electrophysiology Time-series.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:2363-2366. doi: 10.1109/EMBC46164.2021.9630506.

Abstract

Many automated sleep staging studies have used deep learning approaches, and a growing number of them have used multimodal data to improve their classification performance. However, few studies using multimodal data have provided model explainability. Some have used traditional ablation approaches that "zero out" a modality. However, the samples that result from this ablation are unlikely to be found in real electroencephalography (EEG) data, which could adversely affect the importance estimates that result. Here, we train a convolutional neural network for sleep stage classification with EEG, electrooculograms (EOG), and electromyograms (EMG) and propose an ablation approach that replaces each modality with values that approximate the line-related noise commonly found in electrophysiology data. The relative importance that we identify for each modality is consistent with sleep staging guidelines, with EEG being important for most sleep stages and EOG being important for Rapid Eye Movement (REM) and non-REM stages. EMG showed low relative importance across classes. A comparison of our approach with a "zero out" ablation approach indicates that while the importance results are consistent for the most part, our method accentuates the importance of modalities to the model for the classification of some stages like REM (p < 0.05). These results suggest that a careful, domain-specific selection of an ablation approach may provide a clearer indicator of modality importance. Further, this study provides guidance for future research on using explainability methods with multimodal electrophysiology data.Clinical Relevance- While explainability is helpful for clinical machine learning classifiers, it is important to consider how explainability methods interact with clinical data, a domain for which they were not originally designed.

摘要

许多自动化睡眠分期研究都采用了深度学习方法,越来越多的研究采用多模态数据来提高分类性能。然而,使用多模态数据的研究很少提供模型可解释性。一些研究使用了传统的消融方法,即“零化”一种模态。然而,这种消融产生的样本不太可能在实际的脑电图(EEG)数据中找到,这可能会对结果的重要性估计产生不利影响。在这里,我们使用 EEG、眼电图(EOG)和肌电图(EMG)训练了一个用于睡眠分期分类的卷积神经网络,并提出了一种消融方法,即用常见于电生理数据的线相关噪声近似值替换每个模态的值。我们确定的每个模态的相对重要性与睡眠分期指南一致,EEG 对大多数睡眠阶段很重要,EOG 对 REM 和非 REM 阶段很重要。EMG 在各个类别中的相对重要性较低。我们的方法与“零化”消融方法的比较表明,虽然大部分重要性结果是一致的,但我们的方法强调了模态对模型进行某些阶段(如 REM)分类的重要性(p<0.05)。这些结果表明,谨慎、特定于领域的消融方法选择可能是模态重要性的更清晰指标。此外,本研究为使用多模态电生理学数据的可解释性方法提供了未来研究的指导。临床相关性-虽然可解释性对临床机器学习分类器很有帮助,但重要的是要考虑可解释性方法如何与最初不是为其设计的临床数据相互作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验