Suppr超能文献

通过秩加权平均治疗效果评估治疗优先级规则

Evaluating Treatment Prioritization Rules via Rank-Weighted Average Treatment Effects.

作者信息

Yadlowsky Steve, Fleming Scott, Shah Nigam, Brunskill Emma, Wager Stefan

机构信息

Google DeepMind.

Department of Biomedical Data Science, Stanford University.

出版信息

J Am Stat Assoc. 2025;120(549):38-51. doi: 10.1080/01621459.2024.2393466. Epub 2024 Oct 11.

Abstract

There are a number of available methods for selecting whom to prioritize for treatment, including ones based on treatment effect estimation, risk scoring, and hand-crafted rules. We propose rank-weighted average treatment effect (RATE) metrics as a simple and general family of metrics for comparing and testing the quality of treatment prioritization rules. RATE metrics are agnostic as to how the prioritization rules were derived, and only assess how well they identify individuals that benefit the most from treatment. We define a family of RATE estimators and prove a central limit theorem that enables asymptotically exact inference in a wide variety of randomized and observational study settings. RATE metrics subsume a number of existing metrics, including the Qini coefficient, and our analysis directly yields inference methods for these metrics. We showcase RATE in the context of a number of applications, including optimal targeting of aspirin to stroke patients.

摘要

有多种方法可用于选择治疗的优先对象,包括基于治疗效果估计、风险评分和人工制定规则的方法。我们提出了排名加权平均治疗效果(RATE)指标,作为用于比较和测试治疗优先规则质量的一个简单且通用的指标家族。RATE指标对于优先规则的推导方式不做假设,仅评估它们识别出从治疗中获益最大个体的能力。我们定义了一个RATE估计量家族,并证明了一个中心极限定理,该定理能够在各种随机和观察性研究环境中进行渐近精确推断。RATE指标包含了许多现有指标,包括基尼系数,并且我们的分析直接得出了这些指标的推断方法。我们在包括阿司匹林对中风患者的最佳靶向治疗等多个应用场景中展示了RATE指标。

相似文献

4
Optimal individualized decision rules using instrumental variable methods.使用工具变量法的最优个体化决策规则。
J Am Stat Assoc. 2021;116(533):174-191. doi: 10.1080/01621459.2020.1745814. Epub 2020 May 12.
6
10
Bayesian inference for optimal dynamic treatment regimes in practice.贝叶斯推断在实践中最优动态治疗方案的应用。
Int J Biostat. 2023 May 17;19(2):309-331. doi: 10.1515/ijb-2022-0073. eCollection 2023 Nov 1.

引用本文的文献

本文引用的文献

2
Primary stroke prevention worldwide: translating evidence into action.全球首发卒中预防:将证据转化为行动。
Lancet Public Health. 2022 Jan;7(1):e74-e85. doi: 10.1016/S2468-2667(21)00230-9. Epub 2021 Oct 29.
6
Metalearners for estimating heterogeneous treatment effects using machine learning.使用机器学习估计异质处理效应的元学习器。
Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4156-4165. doi: 10.1073/pnas.1804597116. Epub 2019 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验