Zhang Anbing, Ting Huang, Ma Jun, Xia Xiuqiong, Lao Xiaoli, Li Siqi, Liang Jianping
Department of Pulmonary and Critical Care Medicine, Zhongshan People's Hospital, Zhongshan, China.
Shenzhen University Medical School, Shenzhen University, Shenzhen, China.
Front Immunol. 2025 Apr 7;16:1566597. doi: 10.3389/fimmu.2025.1566597. eCollection 2025.
Non-small cell lung cancer (NSCLC) exhibits variable T-cell responses, influencing prognosis and outcomes.
We analyzed 1,027 NSCLC and 108 non-cancerous samples from TCGA using ssGSEA, WGCNA, and differential expression analysis to identify T-cell-related subtypes. A prognostic model was constructed using LASSO Cox regression and externally validated with GEO datasets (GSE50081, GSE31210, GSE30219). Immune cell infiltration and drug sensitivity were assessed. Gene expression alterations were validated in NSCLC tissues using qRT-PCR.
A 16-gene prognostic model (LATS2, LDHA, CKAP4, COBL, DSG2, MAPK4, AKAP12, HLF, CD69, BAIAP2L2, FSTL3, CXCL13, PTX3, SMO, KREMEN2, HOXC10) was established based on their strong association with T-cell activity and NSCLC prognosis. The model effectively stratified patients into high- and low-risk groups with significant survival differences, demonstrating strong predictive performance (AUCs of 0.68, 0.72, and 0.69 for 1-, 3-, and 5-year survival in the training cohort). External validation confirmed its robustness. A nomogram combining risk scores and clinical factors improved survival prediction (AUCs>0.6). High-risk patients responded better to AZD5991-1720, an MCL1 inhibitor, while low-risk patients showed improved responses to IGF1R-3801-1738, an IGF1R inhibitor, suggesting that risk stratification may help optimize treatment selection based on tumor-specific vulnerabilities. qRT-PCR validation confirmed the differential expression of model genes in NSCLC tissues, consistent with TCGA data.
We identified a 16-gene T-cell-related prognostic model for NSCLC, which stratifies patients by risk and predicts treatment response, aiding personalized therapy decisions. However, prospective validation is needed to confirm its clinical applicability. Potential limitations such as sample size and generalizability should be considered.
非小细胞肺癌(NSCLC)表现出不同的T细胞反应,影响预后和结局。
我们使用单样本基因集富集分析(ssGSEA)、加权基因共表达网络分析(WGCNA)和差异表达分析,对来自癌症基因组图谱(TCGA)的1027例NSCLC样本和108例非癌样本进行分析,以识别T细胞相关亚型。使用套索(LASSO)Cox回归构建预后模型,并通过基因表达综合数据库(GEO)数据集(GSE50081、GSE31210、GSE30219)进行外部验证。评估免疫细胞浸润和药物敏感性。使用定量逆转录聚合酶链反应(qRT-PCR)在NSCLC组织中验证基因表达改变。
基于与T细胞活性和NSCLC预后的强相关性,建立了一个包含16个基因的预后模型(大肿瘤抑制因子2(LATS2)、乳酸脱氢酶A(LDHA)、细胞骨架相关蛋白4(CKAP4)、钴结合蛋白(COBL)、桥粒芯糖蛋白2(DSG2)、丝裂原活化蛋白激酶4(MAPK4)、A激酶锚定蛋白12(AKAP12)、肝白血病因子(HLF)、CD69分子(CD69)、衔接蛋白相关蛋白2样蛋白2(BAIAP2L2)、卵泡抑素样蛋白3(FSTL3)、CXC趋化因子配体13(CXCL13)、五聚体3(PTX3)、平滑肌瘤相关蛋白(SMO)、含Kringle结构域蛋白2(KREMEN2)、同源盒C10(HOXC10))。该模型有效地将患者分为高风险组和低风险组,两组生存差异显著,显示出强大的预测性能(训练队列中1年、3年和5年生存率的受试者工作特征曲线下面积(AUC)分别为0.68、0.72和0.69)。外部验证证实了其稳健性。结合风险评分和临床因素的列线图改善了生存预测(AUC>0.6)。高风险患者对MCL1抑制剂AZD5991 - 1720反应更好,而低风险患者对IGF1R抑制剂IGF1R - 3801 - 1738反应更佳,这表明风险分层可能有助于根据肿瘤特异性脆弱性优化治疗选择。qRT-PCR验证证实了模型基因在NSCLC组织中的差异表达,与TCGA数据一致。
我们为NSCLC鉴定了一个包含16个基因的T细胞相关预后模型,该模型可按风险对患者进行分层并预测治疗反应,有助于个性化治疗决策。然而,需要前瞻性验证以确认其临床适用性。应考虑样本量和可推广性等潜在局限性。