Suppr超能文献

使用格拉姆角场变换结合多导联分析与分割技术增强心电图分类

Enhanced electrocardiogram classification using Gramian angular field transformation with multi-lead analysis and segmentation techniques.

作者信息

Yoon Gi-Won, Joo Segyeong

机构信息

Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.

出版信息

MethodsX. 2025 Apr 8;14:103297. doi: 10.1016/j.mex.2025.103297. eCollection 2025 Jun.

Abstract

Conventional manual or feature-based ECG analysis methods are limited by time inefficiencies and human error. This study explores the potential of transforming 1D signals into 2D Gramian Angular Field (GAF) images for improved classification of four ECG categories: Atrial Fibrillation (AFib), Left Ventricular Hypertrophy (LVH), Right Ventricular Hypertrophy (RVH), and Normal ECG.•The study employed GAF transformations to convert 1D ECG signals into 2D representations at three resolutions: 5000 × 5000, 512 × 512, and 256 × 256 pixels.•Segmentation methods were applied to enhance feature localization.•The ConvNext deep learning model, optimized for image classification, was used to evaluate the transformed ECG images, with performance assessed through accuracy, precision, recall, and F1-score metrics.The 512 × 512 resolution achieved the optimal balance between computational efficiency and accuracy. F1-score for AFib, LVH, RVH and Normal ECG were 0.781, 0.71, 0.521 and 0.792 respectively. Segmentation methods improved classification performance, especially in detecting conditions like LVH and RVH. The 5000 × 5000 resolution offered the highest accuracy but was computationally intensive, whereas the 256 × 256 resolution showed reduced accuracy due to loss details.

摘要

传统的手动或基于特征的心电图分析方法受到时间效率低下和人为误差的限制。本研究探索了将一维信号转换为二维格拉姆角场(GAF)图像以改进四种心电图类别的分类的潜力:心房颤动(AFib)、左心室肥厚(LVH)、右心室肥厚(RVH)和正常心电图。

• 该研究采用GAF变换将一维心电图信号转换为三种分辨率的二维表示:5000×5000、512×512和256×256像素。

• 应用分割方法来增强特征定位。

• 针对图像分类进行优化的ConvNext深度学习模型用于评估转换后的心电图图像,并通过准确率、精确率、召回率和F1分数指标评估性能。

512×512分辨率在计算效率和准确性之间实现了最佳平衡。AFib、LVH、RVH和正常心电图的F1分数分别为0.781、0.71、0.521和0.792。分割方法提高了分类性能,特别是在检测LVH和RVH等情况时。5000×5000分辨率提供了最高的准确性,但计算量很大,而256×256分辨率由于细节丢失而显示出准确性降低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e32/12033961/28770271985d/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验