Department of Information Science, Jimma Institute of Technology, Jimma University, Jimma, Oromia, Ethiopia
Computer Science, Mattu University, Mattu, Oromīya, Ethiopia.
BMJ Health Care Inform. 2024 Feb 2;31(1):e100954. doi: 10.1136/bmjhci-2023-100954.
Breast cancer is the most common disease in women. Recently, explainable artificial intelligence (XAI) approaches have been dedicated to investigate breast cancer. An overwhelming study has been done on XAI for breast cancer. Therefore, this study aims to review an XAI for breast cancer diagnosis from mammography and ultrasound (US) images. We investigated how XAI methods for breast cancer diagnosis have been evaluated, the existing ethical challenges, research gaps, the XAI used and the relation between the accuracy and explainability of algorithms.
In this work, Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist and diagram were used. Peer-reviewed articles and conference proceedings from PubMed, IEEE Explore, ScienceDirect, Scopus and Google Scholar databases were searched. There is no stated date limit to filter the papers. The papers were searched on 19 September 2023, using various combinations of the search terms 'breast cancer', 'explainable', 'interpretable', 'machine learning', 'artificial intelligence' and 'XAI'. Rayyan online platform detected duplicates, inclusion and exclusion of papers.
This study identified 14 primary studies employing XAI for breast cancer diagnosis from mammography and US images. Out of the selected 14 studies, only 1 research evaluated humans' confidence in using the XAI system-additionally, 92.86% of identified papers identified dataset and dataset-related issues as research gaps and future direction. The result showed that further research and evaluation are needed to determine the most effective XAI method for breast cancer.
XAI is not conceded to increase users' and doctors' trust in the system. For the real-world application, effective and systematic evaluation of its trustworthiness in this scenario is lacking.
CRD42023458665.
乳腺癌是女性最常见的疾病。最近,可解释人工智能(XAI)方法被专门用于研究乳腺癌。已经有大量关于 XAI 用于乳腺癌的研究。因此,本研究旨在从乳腺 X 线摄影和超声(US)图像综述 XAI 用于乳腺癌诊断的情况。我们调查了 XAI 用于乳腺癌诊断的方法是如何被评估的、现有的伦理挑战、研究空白、使用的 XAI 以及算法的准确性和可解释性之间的关系。
在这项工作中,使用了系统评价和荟萃分析的首选报告项目清单和图表。从 PubMed、IEEE Explore、ScienceDirect、Scopus 和 Google Scholar 数据库中检索同行评审的文章和会议论文集。没有设定日期限制来筛选论文。这些论文于 2023 年 9 月 19 日使用“乳腺癌”、“可解释”、“可解释”、“机器学习”、“人工智能”和“XAI”等各种组合的搜索词进行搜索。Rayyan 在线平台检测到重复项、论文的纳入和排除。
本研究从乳腺 X 线摄影和 US 图像中确定了 14 项用于乳腺癌诊断的 XAI 原始研究。在所选择的 14 项研究中,只有 1 项研究评估了人类对使用 XAI 系统的信心——此外,92.86%的已识别论文将数据集和数据集相关问题确定为研究空白和未来方向。结果表明,需要进一步研究和评估以确定最有效的 XAI 方法用于乳腺癌。
XAI 并不能增加用户和医生对系统的信任。在实际应用中,缺乏对其在这种情况下的可信度进行有效和系统的评估。
PROSPERO 注册号:CRD42023458665。