Strolin Silvia, Santoro Miriam, Paolani Giulia, Ammendolia Ilario, Arcelli Alessandra, Benini Anna, Bisello Silvia, Cardano Raffaele, Cavallini Letizia, Deraco Elisa, Donati Costanza Maria, Galietta Erika, Galuppi Andrea, Guido Alessandra, Ferioli Martina, Laghi Viola, Medici Federica, Ntreta Maria, Razganiayeva Natalya, Siepe Giambattista, Tolento Giorgio, Vallerossa Daria, Zamagni Alice, Morganti Alessio Giuseppe, Strigari Lidia
Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
Medical Physics Specialization School, Alma Mater Studiorum, University of Bologna, Bologna, Italy.
Front Oncol. 2023 Mar 2;13:1089807. doi: 10.3389/fonc.2023.1089807. eCollection 2023.
A CE- and FDA-approved cloud-based Deep learning (DL)-tool for automatic organs at risk (OARs) and clinical target volumes segmentation on computer tomography images is available. Before its implementation in the clinical practice, an independent external validation was conducted.
At least a senior and two in training Radiation Oncologists (ROs) manually contoured the volumes of interest (VOIs) for 6 tumoral sites. The auto-segmented contours were retrieved from the DL-tool and, if needed, manually corrected by ROs. The level of ROs satisfaction and the duration of contouring were registered. Relative volume differences, similarity indices, satisfactory grades, and time saved were analyzed using a semi-automatic tool.
Seven thousand seven hundred sixty-five VOIs were delineated on the CT images of 111 representative patients. The median (range) time for manual VOIs delineation, DL-based segmentation, and subsequent manual corrections were 25.0 (8.0-115.0), 2.3 (1.2-8) and 10.0 minutes (0.3-46.3), respectively. The overall time for VOIs retrieving and modification was statistically significantly lower than for manual contouring (p<0.001). The DL-tool was generally appreciated by ROs, with 44% of vote 4 (well done) and 43% of vote 5 (very well done), correlated with the saved time (p<0.001). The relative volume differences and similarity indexes suggested a better inter-agreement of manually adjusted DL-based VOIs than manually segmented ones.
The application of the DL-tool resulted satisfactory, especially in complex delineation cases, improving the ROs inter-agreement of delineated VOIs and saving time.
一种经CE和FDA批准的基于云的深度学习(DL)工具可用于在计算机断层扫描图像上自动分割危及器官(OARs)和临床靶区。在将其应用于临床实践之前,进行了独立的外部验证。
至少一名资深放射肿瘤学家(RO)和两名正在接受培训的RO手动勾勒出6个肿瘤部位的感兴趣体积(VOIs)。从DL工具中检索自动分割的轮廓,并在需要时由RO进行手动校正。记录RO的满意度水平和勾勒轮廓的持续时间。使用半自动工具分析相对体积差异、相似性指数、满意等级和节省的时间。
在111例代表性患者的CT图像上勾勒出7765个VOIs。手动勾勒VOIs、基于DL的分割以及随后手动校正的中位(范围)时间分别为25.0(8.0 - 115.0)、2.3(1.2 - 8)和10.(0.3 - 46.3)分钟。VOIs检索和修改的总时间在统计学上显著低于手动勾勒(p<0.001)。RO对DL工具普遍表示赞赏,44%的投票为4分(做得好),43%的投票为5分(做得非常好),这与节省的时间相关(p<0.001)。相对体积差异和相似性指数表明,与手动分割的VOIs相比,基于DL的手动调整VOIs之间的一致性更好。
DL工具的应用结果令人满意,尤其是在复杂的勾勒病例中,提高了RO对勾勒VOIs的一致性并节省了时间。