Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China.
Genome Res. 2023 Oct;33(10):1788-1805. doi: 10.1101/gr.278001.123. Epub 2023 Oct 12.
Cell-cell communication (CCC) is critical for determining cell fates and functions in multicellular organisms. With the advent of single-cell RNA-sequencing (scRNA-seq) and spatial transcriptomics (ST), an increasing number of CCC inference methods have been developed. Nevertheless, a thorough comparison of their performances is yet to be conducted. To fill this gap, we developed a systematic benchmark framework called ESICCC to evaluate 18 ligand-receptor (LR) inference methods and five ligand/receptor-target inference methods using a total of 116 data sets, including 15 ST data sets, 15 sets of cell line perturbation data, two sets of cell type-specific expression/proteomics data, and 84 sets of sampled or unsampled scRNA-seq data. We evaluated and compared the agreement, accuracy, robustness, and usability of these methods. Regarding accuracy evaluation, RNAMagnet, CellChat, and scSeqComm emerge as the three best-performing methods for intercellular ligand-receptor inference based on scRNA-seq data, whereas stMLnet and HoloNet are the best methods for predicting ligand/receptor-target regulation using ST data. To facilitate the practical applications, we provide a decision-tree-style guideline for users to easily choose best tools for their specific research concerns in CCC inference, and develop an ensemble pipeline CCCbank that enables versatile combinations of methods and databases. Moreover, our comparative results also uncover several critical influential factors for CCC inference, such as prior interaction information, ligand-receptor scoring algorithm, intracellular signaling complexity, and spatial relationship, which may be considered in the future studies to advance the development of new methodologies.
细胞间通讯(CCC)对于多细胞生物中确定细胞命运和功能至关重要。随着单细胞 RNA 测序(scRNA-seq)和空间转录组学(ST)的出现,越来越多的 CCC 推断方法得到了发展。然而,它们的性能还需要进行全面比较。为了填补这一空白,我们开发了一个名为 ESICCC 的系统基准框架,使用总共 116 个数据集评估了 18 种配体-受体(LR)推断方法和 5 种配体/受体-靶标推断方法,包括 15 个 ST 数据集、15 组细胞系扰动数据集、两组细胞类型特异性表达/蛋白质组学数据集和 84 组采样或未采样的 scRNA-seq 数据集。我们评估和比较了这些方法的一致性、准确性、稳健性和可用性。在准确性评估方面,基于 scRNA-seq 数据的细胞间配体-受体推断方面,RNAMagnet、CellChat 和 scSeqComm 是表现最好的三种方法,而 stMLnet 和 HoloNet 是使用 ST 数据预测配体/受体-靶标调控的最佳方法。为了便于实际应用,我们提供了一个决策树风格的指南,供用户根据其特定的研究关注点轻松选择最佳的 CCC 推断工具,并开发了一个集成管道 CCCbank,该管道支持多种方法和数据库的灵活组合。此外,我们的比较结果还揭示了一些对 CCC 推断有重要影响的因素,如先验相互作用信息、配体-受体评分算法、细胞内信号复杂性和空间关系,这些因素可能在未来的研究中被考虑,以推进新方法的发展。