Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
Sci Rep. 2022 Aug 20;12(1):14235. doi: 10.1038/s41598-022-18640-8.
The performance and clinical implications of the deep learning aided algorithm using electrocardiogram of heart failure (HF) with reduced ejection fraction (DeepECG-HFrEF) were evaluated in patients with acute HF. The DeepECG-HFrEF algorithm was trained to identify left ventricular systolic dysfunction (LVSD), defined by an ejection fraction (EF) < 40%. Symptomatic HF patients admitted at Seoul National University Hospital between 2011 and 2014 were included. The performance of DeepECG-HFrEF was determined using the area under the receiver operating characteristic curve (AUC) values. The 5-year mortality according to DeepECG-HFrEF results was analyzed using the Kaplan-Meier method. A total of 690 patients contributing 18,449 ECGs were included with final 1291 ECGs eligible for the study (mean age 67.8 ± 14.4 years; men, 56%). HFrEF (+) identified an EF < 40% and HFrEF (-) identified EF ≥ 40%. The AUC value was 0.844 for identifying HFrEF among patients with acute symptomatic HF. Those classified as HFrEF (+) showed lower survival rates than HFrEF (-) (log-rank p < 0.001). The DeepECG-HFrEF algorithm can discriminate HFrEF in a real-world HF cohort with acceptable performance. HFrEF (+) was associated with higher mortality rates. The DeepECG-HFrEF algorithm may help in identification of LVSD and of patients at risk of worse survival in resource-limited settings.
深度学习辅助算法利用心电图评估急性心力衰竭(HF)伴射血分数降低(DeepECG-HFrEF)患者的表现及其临床意义。DeepECG-HFrEF 算法经过训练可识别左心室收缩功能障碍(LVSD),定义为射血分数(EF)<40%。2011 年至 2014 年期间,在首尔国立大学医院收治的有症状 HF 患者中纳入本研究。使用接受者操作特征曲线(ROC)下面积(AUC)值确定 DeepECG-HFrEF 的性能。使用 Kaplan-Meier 方法根据 DeepECG-HFrEF 结果分析 5 年死亡率。共纳入 690 例患者(18449 份心电图),其中最终 1291 份心电图符合研究条件(平均年龄 67.8±14.4 岁;男性 56%)。HFrEF(+)识别 EF<40%,HFrEF(-)识别 EF≥40%。在急性有症状 HF 患者中,DeepECG-HFrEF 识别 HFrEF 的 AUC 值为 0.844。分类为 HFrEF(+)的患者生存率低于 HFrEF(-)(对数秩检验,p<0.001)。DeepECG-HFrEF 算法可在具有可接受性能的真实 HF 队列中区分 HFrEF。HFrEF(+)与更高的死亡率相关。DeepECG-HFrEF 算法可能有助于在资源有限的情况下识别 LVSD 和生存率较差的患者。