Suppr超能文献

深度学习图像重建算法用于提高胰腺导管腺癌患者双能CT虚拟单色图像的质量

Improved Image Quality of Virtual Monochromatic Images with Deep Learning Image Reconstruction Algorithm on Dual-Energy CT in Patients with Pancreatic Ductal Adenocarcinoma.

作者信息

Sofue Keitaro, Ueshima Eisuke, Ueno Yoshiko, Yamaguchi Takeru, Hori Masatoshi, Murakami Takamichi

机构信息

Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan.

Department of Artificial Intelligence in Diagnostic Radiology, Osaka University Graduate School of Medicine, Osaka, Japan.

出版信息

J Imaging Inform Med. 2025 Apr 30. doi: 10.1007/s10278-025-01514-6.

Abstract

This study aimed to evaluate the image quality of virtual monochromatic images (VMIs) reconstructed with deep learning image reconstruction (DLIR) using dual-energy CT (DECT) to diagnose pancreatic ductal adenocarcinoma (PDAC). Fifty patients with histologically confirmed PDAC who underwent multiphasic contrast-enhanced DECT between 2019 and 2022 were retrospectively analyzed. VMIs at 40-100 keV were reconstructed using hybrid iterative reconstruction (ASiR-V 30% and ASiR-V 50%) and DLIR (TFI-M) algorithms. Quantitative analyses included contrast-to-noise ratios (CNR) of the major abdominal vessels, liver, pancreas, and the PDAC. Qualitative image quality assessments included image noise, soft-tissue sharpness, vessel contrast, and PDAC conspicuity. Noise power spectrum (NPS) analysis was performed to examine the variance and spatial frequency characteristics of image noise using a phantom. TFI-M significantly improved image quality compared to ASiR-V 30% and ASiR-V 50%, especially at lower keV levels. VMIs with TFI-M showed reduced image noise and higher pancreas-to-tumor CNR at 40 keV. Qualitative evaluations confirmed DLIR's superiority in noise reduction, tissue sharpness, and vessel conspicuity, with substantial interobserver agreement (κ = 0.61-0.78). NPS analysis demonstrated effective noise reduction across spatial frequencies. DLIR significantly improved the image quality of VMIs on DECT by reducing image noise and increasing CNR, particularly at lower keV levels. These improvements may improve PDAC detection and assessment, making it a valuable tool for pancreatic cancer imaging.

摘要

本研究旨在评估采用深度学习图像重建(DLIR)的双能CT(DECT)重建的虚拟单色图像(VMI)对胰腺导管腺癌(PDAC)的诊断图像质量。回顾性分析了2019年至2022年间50例经组织学证实为PDAC且接受多期对比增强DECT检查的患者。使用混合迭代重建(ASiR-V 30%和ASiR-V 50%)和DLIR(TFI-M)算法重建40-100 keV的VMI。定量分析包括主要腹部血管、肝脏、胰腺和PDAC的对比噪声比(CNR)。定性图像质量评估包括图像噪声、软组织清晰度、血管对比度和PDAC的可见性。使用模体进行噪声功率谱(NPS)分析,以检查图像噪声的方差和空间频率特征。与ASiR-V 30%和ASiR-V 50%相比,TFI-M显著提高了图像质量,尤其是在较低keV水平时。采用TFI-M的VMI在40 keV时显示图像噪声降低,胰腺与肿瘤的CNR更高。定性评估证实了DLIR在降噪、组织清晰度和血管可见性方面的优越性,观察者间具有高度一致性(κ=0.61-0.78)。NPS分析表明在整个空间频率上有效降低了噪声。DLIR通过降低图像噪声和增加CNR,显著提高了DECT上VMI的图像质量,尤其是在较低keV水平时。这些改进可能会改善PDAC的检测和评估,使其成为胰腺癌成像的有价值工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验