Suppr超能文献

荧光参考靶标定量分析文库

Fluorescence Reference Target Quantitative Analysis Library.

作者信息

Littler Eammon A, Mannoh Emmanuel A, LaRochelle Ethan P M

机构信息

QUEL Imaging, White River Junction, VT 05001 USA.

出版信息

ArXiv. 2025 Apr 22:arXiv:2504.15496v1.

Abstract

Standardized performance evaluation of fluorescence imaging systems remains a critical unmet need in the field of fluorescence-guided surgery (FGS). While the American Association of Physicists in Medicine (AAPM) TG311 report and recent FDA draft guidance provide recommended metrics for system characterization, practical tools for extracting these metrics remain limited, inconsistent, and often inaccessible. We present , an open-source Python library designed to streamline and standardize the quantitative analysis of fluorescence images using solid reference targets. The library provides a modular, reproducible workflow that includes region of interest (ROI) detection, statistical analysis, and visualization capabilities. QUEL-QAL supports key metrics such as response linearity, limit of detection, depth sensitivity, and spatial resolution, in alignment with regulatory and academic guidance. Built on widely adopted Python packages, the library is designed to be extensible, enabling users to adapt it to novel target designs and analysis protocols. By promoting transparency, reproducibility, and regulatory alignment, QUEL-QAL offers a foundational tool to support standardized benchmarking and accelerate the development and evaluation of fluorescence imaging systems.

摘要

在荧光引导手术(FGS)领域,荧光成像系统的标准化性能评估仍然是一个关键的未满足需求。虽然美国医学物理学会(AAPM)的TG311报告和美国食品药品监督管理局(FDA)最近的草案指南提供了系统表征的推荐指标,但用于提取这些指标的实用工具仍然有限、不一致,而且往往难以获得。我们展示了QUEL-QAL,这是一个开源的Python库,旨在使用固体参考目标简化和标准化荧光图像的定量分析。该库提供了一个模块化、可重复的工作流程,包括感兴趣区域(ROI)检测、统计分析和可视化功能。QUEL-QAL支持诸如响应线性、检测限、深度灵敏度和空间分辨率等关键指标,符合监管和学术指南。该库基于广泛采用的Python包构建,旨在具有可扩展性,使用户能够将其应用于新颖的目标设计和分析协议。通过促进透明度、可重复性和与监管的一致性,QUEL-QAL提供了一个基础工具,以支持标准化基准测试,并加速荧光成像系统的开发和评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2348/12045395/c3deebcad2cf/nihpp-2504.15496v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验