Suppr超能文献

在拖鞋蜗牛(Crepidula atrasolea)中利用CRISPR/Cas9敲除壳基质蛋白1

CRISPR/Cas9 Knockout of Shell Matrix Protein 1 in the Slipper-Snail Crepidula atrasolea.

作者信息

Batzel Grant, Wang Yiqun, Bock Antonia, Chen Elbereth, Neal Stephanie, Lopez-Anido Rebecca N, Lee Yoon, Tjeerdema Evan, Ignatoff Emily, Patil Tejasvi, Ramirez Gabriela, Lesoway Maryna P, Hamdoun Amro, Lyons Deirdre C

机构信息

Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, U.C. San Diego, La Jolla, California, USA.

出版信息

J Exp Zool B Mol Dev Evol. 2025 Jul;344(5):266-283. doi: 10.1002/jez.b.23293. Epub 2025 May 4.

Abstract

Over the course of hundreds of millions of years, biomineralization has evolved independently many times across all kingdoms of life. Among animals, the phylum Mollusca displays a remarkable diversity in biomineral structures, particularly the molluscan shell, which varies greatly in shape, size, pigmentation, and patterning. Shell matrix proteins (SMPs) are key components of these shells, and are thought to drive the precipitation of calcium carbonate minerals and influence shell morphology. However, this structure-function relationship has rarely been studied directly because tools for knocking out genes did not exist in molluscs until recently. In this study, we report the first successful use of CRISPR/Cas9 gene editing to target an SMP in gastropod molluscs. Using the emerging model gastropod Crepidula atrasolea, we generated knockouts of the SMP1 gene. Successful gene editing was confirmed by Sanger and MiSeq sequencing, and loss of SMP1 expression was validated through high-content imaging of crispant embryos. This study establishes C. atrasolea as a valuable model for investigating the genetic basis of shell formation and provides a framework for applying CRISPR/Cas9 technology in other molluscan species. Our approach will enable future studies to thoroughly test the role of SMPs in shaping the diverse array of molluscan shell structures.

摘要

在数亿年的时间里,生物矿化在所有生命王国中独立进化了许多次。在动物中,软体动物门在生物矿化结构方面表现出显著的多样性,尤其是软体动物的壳,其形状、大小、色素沉着和图案差异很大。壳基质蛋白(SMPs)是这些贝壳的关键组成部分,被认为可以驱动碳酸钙矿物的沉淀并影响贝壳形态。然而,这种结构-功能关系很少被直接研究,因为直到最近软体动物中才存在基因敲除工具。在本研究中,我们报告了首次成功使用CRISPR/Cas9基因编辑技术在腹足纲软体动物中靶向一个SMP。利用新出现的腹足纲模式生物黑足盘螺,我们生成了SMP1基因的敲除体。通过Sanger测序和MiSeq测序确认了成功的基因编辑,并通过对crispant胚胎的高内涵成像验证了SMP1表达的缺失。本研究将黑足盘螺确立为研究贝壳形成遗传基础的有价值模型,并为在其他软体动物物种中应用CRISPR/Cas9技术提供了框架。我们的方法将使未来的研究能够彻底测试SMPs在塑造各种软体动物壳结构中的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验