Kobernat Sarah E, Lazouskaya Maryna, Balzer Benjamin C, Wolf Amanda, Mortuza Golam M, Dickinson George D, Andersen Tim, Hughes William L, Piantanida Luca, Hayden Eric J
Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, United States.
Department of Biological Sciences, Boise State University, Boise, ID 83725, United States.
Synth Biol (Oxf). 2025 Apr 7;10(1):ysaf008. doi: 10.1093/synbio/ysaf008. eCollection 2025.
DNA has emerged as a promising material to address growing data storage demands. We recently demonstrated a structure-based DNA data storage approach where DNA probes are spatially oriented on the surface of DNA origami and decoded using DNA-PAINT. In this approach, larger origami structures could improve the efficiency of reading and writing data. However, larger origami require long single-stranded DNA scaffolds that are not commonly available. Here, we report the engineering of a novel longer DNA scaffold designed to produce a larger rectangle origami needed to expand the origami-based digital nucleic acid memory (dNAM) approach. We confirmed that this scaffold self-assembled into the correct origami platform and correctly positioned DNA data strands using atomic force microscopy and DNA-PAINT super-resolution microscopy. This larger structure enables a 67% increase in the number of data points per origami and will support efforts to efficiently scale up origami-based dNAM.
脱氧核糖核酸(DNA)已成为一种很有前景的材料,可满足日益增长的数据存储需求。我们最近展示了一种基于结构的DNA数据存储方法,其中DNA探针在DNA折纸表面进行空间定向,并使用DNA-PAINT进行解码。在这种方法中,更大的折纸结构可以提高数据读写效率。然而,更大的折纸需要不常见的长单链DNA支架。在这里,我们报告了一种新型更长DNA支架的工程设计,该支架旨在生产更大的矩形折纸,以扩展基于折纸的数字核酸存储器(dNAM)方法。我们使用原子力显微镜和DNA-PAINT超分辨率显微镜证实,这种支架能自组装成正确的折纸平台,并正确定位DNA数据链。这种更大的结构使每个折纸的数据点数增加了67%,并将有助于推动基于折纸的dNAM的有效扩展。