Suppr超能文献

剖析“X”辩论:运用先进机器学习进行水氟化处理情感分析

Mapping the "X" Debate: Water Fluoridation Sentiment Analysis With Advanced Machine Learning.

作者信息

Torwane Nilesh, Lalloo Ratilal, Ha Diep, Do Loc

机构信息

School of Dentistry, University of Queensland, Herston, Australia.

出版信息

J Public Health Dent. 2025 Sep;85(3):231-243. doi: 10.1111/jphd.12669. Epub 2025 May 7.

Abstract

OBJECTIVES

This study aimed to examine public sentiment regarding community water fluoridation (CWF) using data from "X" (formerly Twitter) over the past decade. The goal was to understand public opinion trends and identify opportunities for targeted public health communication.

METHODS

We conducted a sentiment analysis utilizing a natural language processing technique. Specifically, we applied the Sentiment Intensity Analyzer tool to classify tweets related to CWF into negative, positive, or neutral categories. Additionally, a word co-occurrence network analysis was performed to explore key discussion themes. We also compared machine learning models to assess their accuracy in classifying tweet sentiments.

RESULTS

Analysis of the tweets revealed a balanced distribution of sentiments: 37.4% negative, 34.4% positive, and 28.2% neutral. Peaks in public engagement occurred between 2015 and 2016, with a subsequent decline after 2018. Sentiment spikes were often associated with significant events, including policy changes and media coverage. The word co-occurrence network highlighted recurring themes related to safety and dental health. Among the machine learning models evaluated, Logistic Regression demonstrated the highest accuracy in sentiment classification.

CONCLUSIONS

Our findings highlight the polarized nature of public sentiment toward CWF and the temporal fluctuations in public engagement. These insights can inform public health policymakers in developing timely, targeted communication strategies. Specifically, efforts to engage neutral audiences through transparent messaging and counter misinformation during key periods may strengthen public trust in CWF. The application of machine learning in this analysis underscores its value in enhancing real-time monitoring and supporting evidence-based public health strategies.

摘要

目的

本研究旨在利用过去十年来自“X”(原推特)的数据,考察公众对社区水氟化(CWF)的看法。目标是了解公众舆论趋势,并确定有针对性的公共卫生宣传机会。

方法

我们运用自然语言处理技术进行了情感分析。具体而言,我们应用情感强度分析工具将与CWF相关的推文分类为负面、正面或中性类别。此外,还进行了词共现网络分析,以探索关键讨论主题。我们还比较了机器学习模型,以评估它们在分类推文情感方面的准确性。

结果

对推文的分析显示,情感分布较为均衡:37.4%为负面,34.4%为正面,28.2%为中性。公众参与度在2015年至2016年期间达到峰值,2018年后随后下降。情感峰值通常与重大事件相关,包括政策变化和媒体报道。词共现网络突出了与安全和牙齿健康相关的反复出现的主题。在评估的机器学习模型中,逻辑回归在情感分类方面表现出最高的准确性。

结论

我们的研究结果突出了公众对CWF看法的两极分化性质以及公众参与度的时间波动。这些见解可为公共卫生政策制定者制定及时、有针对性的沟通策略提供参考。具体而言,在关键时期通过透明信息吸引中立受众并反驳错误信息的努力,可能会增强公众对CWF的信任。机器学习在本分析中的应用强调了其在加强实时监测和支持循证公共卫生策略方面的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02a7/12418723/2844f44b9085/JPHD-85-231-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验