Suppr超能文献

OA-混合卷积神经网络(OHC):一种用于提高膝关节骨关节炎成像诊断准确性的先进深度学习融合模型。

OA-HybridCNN (OHC): An advanced deep learning fusion model for enhanced diagnostic accuracy in knee osteoarthritis imaging.

作者信息

Liao Yihan, Yang Guang, Pan Wenjin, Lu Yun

机构信息

Department of anesthesiology, Xuzhou Medical University, Xuzhou, China.

Department of Neurology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China.

出版信息

PLoS One. 2025 May 7;20(5):e0322540. doi: 10.1371/journal.pone.0322540. eCollection 2025.

Abstract

Knee osteoarthritis (KOA) is a leading cause of disability globally. Early and accurate diagnosis is paramount in preventing its progression and improving patients' quality of life. However, the inconsistency in radiologists' expertise and the onset of visual fatigue during prolonged image analysis often compromise diagnostic accuracy, highlighting the need for automated diagnostic solutions. In this study, we present an advanced deep learning model, OA-HybridCNN (OHC), which integrates ResNet and DenseNet architectures. This integration effectively addresses the gradient vanishing issue in DenseNet and augments prediction accuracy. To evaluate its performance, we conducted a thorough comparison with other deep learning models using five-fold cross-validation and external tests. The OHC model outperformed its counterparts across all performance metrics. In external testing, OHC exhibited an accuracy of 91.77%, precision of 92.34%, and recall of 91.36%. During the five-fold cross-validation, its average AUC and ACC were 86.34% and 87.42%, respectively. Deep learning, particularly exemplified by the OHC model, has greatly improved the efficiency and accuracy of KOA imaging diagnosis. The adoption of such technologies not only alleviates the burden on radiologists but also significantly enhances diagnostic precision.

摘要

膝骨关节炎(KOA)是全球致残的主要原因。早期准确诊断对于预防其进展和提高患者生活质量至关重要。然而,放射科医生专业水平的不一致以及长时间图像分析过程中视觉疲劳的出现,常常会影响诊断准确性,这凸显了对自动化诊断解决方案的需求。在本研究中,我们提出了一种先进的深度学习模型OA-HybridCNN(OHC),它整合了ResNet和DenseNet架构。这种整合有效地解决了DenseNet中的梯度消失问题,并提高了预测准确性。为了评估其性能,我们使用五折交叉验证和外部测试与其他深度学习模型进行了全面比较。OHC模型在所有性能指标上均优于其他模型。在外部测试中,OHC的准确率为91.77%,精确率为92.34%,召回率为91.36%。在五折交叉验证期间,其平均AUC和ACC分别为86.34%和87.42%。深度学习,尤其是以OHC模型为例,极大地提高了KOA成像诊断的效率和准确性。采用此类技术不仅减轻了放射科医生的负担,还显著提高了诊断精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/295a/12058133/dfe920beed21/pone.0322540.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验