Suppr超能文献

增强磁共振成像中头颈部肿瘤的分割:图像预处理和模型集成的影响。

Enhancing Head and Neck Tumor Segmentation in MRI: The Impact of Image Preprocessing and Model Ensembling.

作者信息

Astaraki Mehdi, Toma-Dasu Iuliana

机构信息

Department of Medical Radiation Physics, Stockholm University, Stockholm, Sweden.

Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.

出版信息

Head Neck Tumor Segm MR Guid Appl (2024). 2025;15273:112-122. doi: 10.1007/978-3-031-83274-1_8. Epub 2025 Mar 3.

Abstract

The adoption of online adaptive MR-guided radiotherapy (MRgRT) for Head and Neck Cancer (HNC) treatment faces challenges due to the complexity of manual HNC tumor delineation. This study focused on the problem of HNC tumor segmentation and investigated the effects of different preprocessing techniques, robust segmentation models, and ensembling steps on segmentation accuracy to propose an optimal solution. We contributed to the MICCAI Head and Neck Tumor Segmentation for MR-Guided Applications (HNTS-MRG) challenge which contains segmentation of HNC tumors in Task1) pre-RT and Task2) mid-RT MR images. In the internal validation phase, the most accurate results were achieved by ensembling two models trained on maximally cropped and contrast-enhanced images which yielded average volumetric Dice scores of (0.680, 0.785) and (0.493, 0.810) for (GTVp, GTVn) on pre-RT and mid-RT volumes. For the final testing phase, the models were submitted under the team's name of "Stockholm_Trio" and the overall segmentation performance achieved aggregated Dice scores of (0.795, 0.849) and (0.553, 0.865) for pre- and mid-RT tasks, respectively. The developed models are available at https://github.com/Astarakee/miccai24.

摘要

由于头颈部癌(HNC)手动肿瘤轮廓勾画的复杂性,采用在线自适应磁共振引导放疗(MRgRT)治疗HNC面临挑战。本研究聚焦于HNC肿瘤分割问题,研究了不同预处理技术、稳健分割模型和集成步骤对分割准确性的影响,以提出最佳解决方案。我们参与了医学图像计算与计算机辅助干预国际会议(MICCAI)的头颈部肿瘤磁共振引导应用分割(HNTS-MRG)挑战赛,该挑战赛包括在任务1)放疗前和任务2)放疗中期磁共振图像中对HNC肿瘤进行分割。在内部验证阶段,通过集成在最大裁剪和对比度增强图像上训练的两个模型获得了最准确的结果,在放疗前和放疗中期体积上,(GTVp,GTVn)的平均体积骰子系数得分分别为(0.680,0.785)和(0.493,0.810)。在最终测试阶段,模型以“Stockholm_Trio”团队的名义提交,放疗前和放疗中期任务的总体分割性能分别获得了聚合骰子系数得分(0.795,0.849)和(0.553,0.865)。所开发的模型可在https://github.com/Astarakee/miccai24获取。

相似文献

本文引用的文献

3
MRI-Guided Adaptive Radiation Therapy.磁共振引导自适应放疗
Semin Radiat Oncol. 2024 Jan;34(1):84-91. doi: 10.1016/j.semradonc.2023.10.013.
5
The Medical Segmentation Decathlon.医学分割十项全能
Nat Commun. 2022 Jul 15;13(1):4128. doi: 10.1038/s41467-022-30695-9.
6
Head and neck tumor segmentation in PET/CT: The HECKTOR challenge.头颈部肿瘤在 PET/CT 中的分割:HECKTOR 挑战赛。
Med Image Anal. 2022 Apr;77:102336. doi: 10.1016/j.media.2021.102336. Epub 2021 Dec 25.
9
The future of image-guided radiotherapy will be MR guided.图像引导放射治疗的未来将是磁共振引导的。
Br J Radiol. 2017 May;90(1073):20160667. doi: 10.1259/bjr.20160667. Epub 2017 Mar 29.
10
N4ITK: improved N3 bias correction.N4ITK:改进的 N3 偏置校正。
IEEE Trans Med Imaging. 2010 Jun;29(6):1310-20. doi: 10.1109/TMI.2010.2046908. Epub 2010 Apr 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验