Suppr超能文献

SegRap2023:鼻咽癌放疗计划中危及器官和大体肿瘤体积分割的基准

SegRap2023: A benchmark of organs-at-risk and gross tumor volume Segmentation for Radiotherapy Planning of Nasopharyngeal Carcinoma.

作者信息

Luo Xiangde, Fu Jia, Zhong Yunxin, Liu Shuolin, Han Bing, Astaraki Mehdi, Bendazzoli Simone, Toma-Dasu Iuliana, Ye Yiwen, Chen Ziyang, Xia Yong, Su Yanzhou, Ye Jin, He Junjun, Xing Zhaohu, Wang Hongqiu, Zhu Lei, Yang Kaixiang, Fang Xin, Wang Zhiwei, Lee Chan Woong, Park Sang Joon, Chun Jaehee, Ulrich Constantin, Maier-Hein Klaus H, Ndipenoch Nchongmaje, Miron Alina, Li Yongmin, Zhang Yimeng, Chen Yu, Bai Lu, Huang Jinlong, An Chengyang, Wang Lisheng, Huang Kaiwen, Gu Yunqi, Zhou Tao, Zhou Mu, Zhang Shichuan, Liao Wenjun, Wang Guotai, Zhang Shaoting

机构信息

School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China; Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Chengdu, China; Shanghai Artificial Intelligence Laboratory, Shanghai, China.

School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China.

出版信息

Med Image Anal. 2025 Apr;101:103447. doi: 10.1016/j.media.2024.103447. Epub 2025 Jan 2.

Abstract

Radiation therapy is a primary and effective treatment strategy for NasoPharyngeal Carcinoma (NPC). The precise delineation of Gross Tumor Volumes (GTVs) and Organs-At-Risk (OARs) is crucial in radiation treatment, directly impacting patient prognosis. Despite that deep learning has achieved remarkable performance on various medical image segmentation tasks, its performance on OARs and GTVs of NPC is still limited, and high-quality benchmark datasets on this task are highly desirable for model development and evaluation. To alleviate this problem, the SegRap2023 challenge was organized in conjunction with MICCAI2023 and presented a large-scale benchmark for OAR and GTV segmentation with 400 Computed Tomography (CT) scans from 200 NPC patients, each with a pair of pre-aligned non-contrast and contrast-enhanced CT scans. The challenge aimed to segment 45 OARs and 2 GTVs from the paired CT scans per patient, and received 10 and 11 complete submissions for the two tasks, respectively. In this paper, we detail the challenge and analyze the solutions of all participants. The average Dice similarity coefficient scores for all submissions ranged from 76.68% to 86.70%, and 70.42% to 73.44% for OARs and GTVs, respectively. We conclude that the segmentation of relatively large OARs is well-addressed, and more efforts are needed for GTVs and small or thin OARs. The benchmark remains available at: https://segrap2023.grand-challenge.org.

摘要

放射治疗是鼻咽癌(NPC)的主要有效治疗策略。大体肿瘤体积(GTV)和危及器官(OAR)的精确勾画在放射治疗中至关重要,直接影响患者预后。尽管深度学习在各种医学图像分割任务中取得了显著成效,但其在鼻咽癌的OAR和GTV分割上的表现仍有局限,并且该任务高质量的基准数据集对于模型开发和评估非常必要。为缓解这一问题,SegRap2023挑战赛与MICCAI2023联合举办,提供了一个大规模的OAR和GTV分割基准,包含来自200例NPC患者的400份计算机断层扫描(CT),每位患者有一对预先配准的平扫和增强CT扫描。该挑战赛旨在从每位患者的配对CT扫描中分割出45个OAR和2个GTV,两个任务分别收到了10份和11份完整提交。在本文中,我们详细介绍了该挑战赛并分析了所有参与者的解决方案。所有提交的平均Dice相似系数得分在76.68%至86.70%之间,OAR和GTV的得分分别在70.42%至73.44%之间。我们得出结论,相对较大的OAR分割问题得到了较好解决,而GTV以及小的或薄的OAR分割仍需更多努力。该基准数据集可在以下网址获取:https://segrap2023.grand-challenge.org

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验