Lukes Adela, Bale Reto, Freysinger Wolfgang
Interventional Oncology-Stereotaxy and Robotics (SIP), Radiology Department, Medical University Innsbruck, Innsbruck, Austria.
4D Visualization Laboratory, ENT Clinic, Medical University Innsbruck, Innsbruck, Austria.
Int J Comput Assist Radiol Surg. 2025 May 11. doi: 10.1007/s11548-025-03386-1.
Radiofrequency ablation is a well established minimally invasive procedure to treat tumors in solid organs. During the procedure applicators are inserted into the tumor and cells around their tips are destroyed by heat-induced denaturation. Manual trajectory planning requires a trained interventionalist, and its complexity and planning time rise significantly with an increasing number of trajectories.
We propose a trajectory planning method using a genetic algorithm to accelerate the planning process by automatically generating multiple safe plans. Our method uses a non-discrete search space to find the best entry and target points and does not need any prior calculation of such candidate's points sets. The method offers multiple plans, allowing the interventionalists to choose the most appropriate one. We tested on an open-source and in-house dataset, comparing with related work and retrospectively with the in-house clinical planning.
Our method, tested on 154 liver tumors across all segments using a 10 mm ablation radius, achieves a mean coverage of over 99% of the tumors including a 5 mm safety margin. The method provides safe trajectories for all solutions and is on average 4 faster than related approaches.
To the best of our knowledge, we are the first to propose a fast and accurate planning technique using multiple applicators with 10 mm ablation radius. Our algorithm can deliver solutions optimizing more than ten trajectories, approaching the clinical practice at our institution, where large tumors are treated with multiple overlapping ablation zones rather than resection.
射频消融是一种成熟的用于治疗实体器官肿瘤的微创手术。在手术过程中,将消融针插入肿瘤,其尖端周围的细胞因热诱导变性而被破坏。手动轨迹规划需要训练有素的介入专家,并且随着轨迹数量的增加,其复杂性和规划时间会显著增加。
我们提出一种使用遗传算法的轨迹规划方法,通过自动生成多个安全计划来加速规划过程。我们的方法使用非离散搜索空间来找到最佳的进针点和靶点,并且不需要对这些候选点集进行任何预先计算。该方法提供多个计划,使介入专家能够选择最合适的方案。我们在一个开源数据集和内部数据集上进行了测试,与相关工作进行了比较,并与内部临床规划进行了回顾性比较。
我们的方法在使用10毫米消融半径的情况下,对所有肝段的154个肝肿瘤进行了测试,实现了对包括5毫米安全 margin 的肿瘤平均覆盖率超过99%。该方法为所有解决方案提供了安全轨迹,平均比相关方法快4倍。
据我们所知,我们是第一个提出使用10毫米消融半径的多个消融针的快速准确规划技术的。我们的算法可以提供优化十多条轨迹的解决方案,接近我们机构的临床实践,即使用多个重叠消融区而非切除来治疗大肿瘤。