Er-Raji Oussama, Lange Stefan, Hartwig Carl Eric, Prasetio Adi, Bivour Martin, Hermle Martin, Turek Marko, De Wolf Stefaan, Glunz Stefan W, Borchert Juliane, Schulze Patricia S C
Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110, Freiburg, Germany.
Chair of Photovoltaic Energy Conversion, Department of Sustainable Systems Engineering (INATECH), University of Freiburg, Emmy-Noether-Str.2, 79110, Freiburg, Germany.
Small Methods. 2025 Jul;9(7):e2401758. doi: 10.1002/smtd.202401758. Epub 2025 Feb 25.
Self-assemble monolayers (SAMs) have become state-of-the-art hole-selective contacts for high-efficiency perovskite-based solar cells due to their easy processing, passivation capability, and low parasitic absorption. Nevertheless, for the deposition of SAMs with a monolayer thickness and a high packing density on metal oxide substrates, critical challenges persist. To overcome these, the study focuses on the impact of annealing temperature - an intrinsic yet so far unexplored process parameter - during the formation of SAMs. By performing in situ angle-resolved X-ray photoelectron spectroscopy combined with advanced data analysis routines, it is revealed that increasing the annealing temperature reduces the formed SAM layer thickness from a multilayer stack of ≈5 nm at 100 °C (conventional temperature employed in literature) to a monolayer at 150 °C. Furthermore, denser adsorption of the SAM to the metal oxide surface is promoted at high temperatures, which enhances the interfacial SAM/perovskite passivation quality. With this strategy, a 1.3% power conversion efficiency (PCE) increment is obtained in fully-textured perovskite/silicon tandem solar cells, with improved reproducibility, and a champion device approaching 30% PCE. This study advances the understanding of SAMs formation and presents a promising strategy for further progress in high-efficiency perovskite-based solar cells.
自组装单分子层(SAMs)因其易于加工、钝化能力和低寄生吸收,已成为用于高效钙钛矿基太阳能电池的先进空穴选择性接触材料。然而,在金属氧化物衬底上沉积具有单层厚度和高堆积密度的SAMs仍面临严峻挑战。为克服这些挑战,该研究聚焦于退火温度(一个内在但迄今尚未探索的工艺参数)在SAMs形成过程中的影响。通过结合先进数据分析程序进行原位角分辨X射线光电子能谱分析,结果表明,提高退火温度会使形成的SAM层厚度从100℃(文献中常用的传统温度)下约5nm的多层堆叠减少到150℃下的单层。此外,高温促进了SAM在金属氧化物表面的更致密吸附,从而提高了界面SAM/钙钛矿的钝化质量。采用这种策略,在全纹理钙钛矿/硅串联太阳能电池中获得了1.3%的功率转换效率(PCE)提升,重现性得到改善,且最佳器件的PCE接近30%。这项研究增进了对SAMs形成的理解,并为高效钙钛矿基太阳能电池的进一步发展提出了一种有前景的策略。