Suppr超能文献

应用可解释机器学习算法预测中国2型糖尿病患者的大血管病变风险。

Application of interpretable machine learning algorithms to predict macroangiopathy risk in Chinese patients with type 2 diabetes mellitus.

作者信息

Zhang Ningjie, Wang Yan, Zhang Hui, Fang Huilong, Li Xinyi, Li Zhifen, Huan Zhenghang, Zhang Zugui, Wang Yongjun, Li Wei, Gong Zheng

机构信息

Department of Blood Transfusion, The Second Xiangya Hospital, Central South University, Changsha, China.

Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, NO. 1, Jianshe East Road, Zhengzhou, 450052, Henan, China.

出版信息

Sci Rep. 2025 May 12;15(1):16393. doi: 10.1038/s41598-025-01161-5.

Abstract

Macrovascular complications are leading causes of morbidity and mortality in patients with type 2 diabetes mellitus (T2DM), yet early diagnosis of cardiovascular disease (CVD) in this population remains clinically challenging. This study aims to develop a machine learning model that can accurately predict diabetic macroangiopathy in Chinese patients. A retrospective cross-sectional analytical study was conducted on 1566 hospitalized patients with T2DM. Feature selection was performed using recursive feature elimination (RFE) within the mlr3 framework. Model performance was benchmarked using 29 machine learning (ML) models, with the ranger model selected for its superior performance. Hyperparameters were optimized through grid search and 5-fold cross-validation. Model interpretability was enhanced using SHAP values and PDPs. An external validation set of 106 patients was used to test the model. Key predictive variables identified included the duration of T2DM, age, fibrinogen, and serum urea nitrogen. The predictive model for macroangiopathy was established and showed good discrimination performance with an accuracy of 0.716 and an AUC of 0.777 in the training set. Validation on the external dataset confirmed its robustness with an AUC of 0.745. This study establish an approach based on machine learning algorithm in features selection and the development of prediction tools for diabetic macroangiopathy.

摘要

大血管并发症是2型糖尿病(T2DM)患者发病和死亡的主要原因,然而在这一人群中早期诊断心血管疾病(CVD)在临床上仍然具有挑战性。本研究旨在开发一种能够准确预测中国患者糖尿病大血管病变的机器学习模型。对1566例住院T2DM患者进行了回顾性横断面分析研究。在mlr3框架内使用递归特征消除(RFE)进行特征选择。使用29种机器学习(ML)模型对模型性能进行基准测试,选择随机森林模型是因其性能优越。通过网格搜索和五折交叉验证对超参数进行优化。使用SHAP值和部分依赖图(PDP)增强模型的可解释性。使用106例患者的外部验证集对模型进行测试。确定的关键预测变量包括T2DM病程、年龄、纤维蛋白原和血清尿素氮。建立了大血管病变的预测模型,在训练集中显示出良好的区分性能,准确率为0.716,曲线下面积(AUC)为0.777。在外部数据集上的验证证实了其稳健性,AUC为0.745。本研究建立了一种基于机器学习算法的糖尿病大血管病变特征选择及预测工具开发方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d45f/12069545/b6871b360e60/41598_2025_1161_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验